本发明涉及显示技术领域,尤其是涉及一种薄膜晶体管的制作方法、薄膜晶体管及显示器。
背景技术:
随着显示技术的发展和用户对显示设备的外观、性能等各方面的要求越来越高,有源矩阵有机发光二极体(Active-matrix organic light emitting diode,AMOLED)柔性显示器应运而生。薄膜晶体管在生产中需要经过氢化处理,以采用低温多晶硅(Low Temperature Poly-silicon,LTPS)薄膜晶体管的阵列结构显示面板为例,多晶硅薄膜晶体管在生产中经过氢化处理,提高了多晶硅薄膜晶体管的电子迁移率,修补了缺陷,使多晶硅薄膜晶体管具有较高的载流子迁移率,从而成为了制作小尺寸高解析度面板的首选。具体的,一般采用多晶硅薄膜晶体管的电容绝缘层和层间绝缘层作补氢层,并采用590℃,10min的高温退火工艺实现阵列基板的氢化处理。在液晶显示器(Liquid Crystal Display,LCD)和刚性AMOLED领域中,采用LTPS的阵列结构显示面板及其制造工艺已日趋成熟,但多晶硅薄膜晶体管在柔性AMOLED显示器的制造和应用中仍不成熟。
现有技术中,为了提高柔性效果,一般将电容绝缘层和层间绝缘层设计为厚度较小的无机层,氢化处理需要依靠无机层提供氢原子,较薄的无机层本身可以提供的氢原子量相对较少,高温氢化过程中部分氢原子向外扩散而未起到氢化的作用,参加氢化过程的氢原子量不足导致氢化效果不佳,即无法在提高AMOLED显示器的柔性的同时保证多晶硅薄膜晶体管的氢化处理效果,生产的多晶硅薄膜晶体管的电子迁移率低,显示设备显示效果不佳。
技术实现要素:
本发明要解决的技术问题是提供一种多晶硅薄膜晶体管的制作方法、多晶硅薄膜晶体管及显示器,用以解决现有技术中无法在提高AMOLED显示器的柔性的同时保证多晶硅薄膜晶体管的氢化处理效果,生产的多晶硅薄膜晶体管的电子迁移率低,显示设备显示效果不佳的问题。
为解决上述技术问题,本发明提供一种薄膜晶体管,包括:
在基板上依次形成主动层、栅极绝缘层、栅极及电容绝缘层,所述栅极绝缘层隔绝所述主动层与所述栅极;
在所述电容绝缘层之背离所述基板一侧形成阻氢层,所述阻氢层覆盖所述电容绝缘层;
氢化处理所述栅极绝缘层及所述主动层。
进一步,所述氢化处理的温度不大于500℃,所述氢化处理的时长不超过60分钟。
进一步,所述阻氢层为导电材料,并且在所述“氢化处理所述栅极绝缘层及所述主动层”之后,所述方法还包括:图形化所述阻氢层形成电容上电极。
进一步,所述“氢化处理所述栅极绝缘层及所述主动层”之后,所述方法还包括:沉积导电材料于所述阻氢层之背离所述基板一侧,并图形化所述导电材料形成电容上电极。
进一步,形成所述电容上电极后,在所述电容上电极之背离所述基板一侧表面形成层间绝缘层,并在所述层间绝缘层表面形成源极和漏极。
本发明还提供一种薄膜晶体管,包括基板及依次层叠设置于所述基板一侧的主动层、栅极绝缘层、栅极及电容绝缘层,所述薄膜晶体管还包括阻氢层,所述阻氢层位于所述电容绝缘层之背离所述基板一侧,并覆盖所述电容绝缘层,所述阻氢层用于阻挡氢化处理时所述电容绝缘层提供的氢离子向外扩散。
进一步,所述薄膜晶体管还包括层叠设置于所述阻氢层之背离所述基板一侧的电容上电极、层间绝缘层、源极及漏极,所述层间绝缘层隔离所述电容上电极与所述源极及漏极于所述层间绝缘层的两侧。
进一步,所述层间绝缘层为有机材料膜层。
进一步,所述阻氢层为无机材料膜层或金属材料膜层。
本发明还提供一种显示器,包括以上任意一项所述的薄膜晶体管。
本发明的有益效果如下:电容绝缘层提供氢原子用于氢化处理主动层和栅极绝缘层,阻氢层阻挡高温氢化过程中向外扩散的氢原子,提高氢原子的利用率,增加参加氢化处理主动层和栅极绝缘层的氢原子,提高氢化效果,当薄膜晶体管应用于AMOLED柔性显示器时,基板为柔性基板,氢化效率的提高可以减少需要提供的总的氢原子的量,即降低了提供氢原子的电容绝缘层的厚度,电容绝缘层的厚度越小,柔性显示器的柔性越好,从而在提高AMOLED显示器的柔性的同时保证薄膜晶体管的氢化处理效果,生产的薄膜晶体管的电子迁移率高,显示设备显示效果良好。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的明显变形方式。
图1为本发明实施例一提供的薄膜晶体管的制作方法流程图。
图2为本发明实施例一提供的薄膜晶体管的制作方法S102步骤的示意图。
图3为本发明实施例一提供的薄膜晶体管的制作方法S103步骤的示意图。
图4为本发明实施例二提供的薄膜晶体管的制作方法流程图。
图5为本发明实施例提供的薄膜晶体管示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请一并参阅图1、图2及图3,本发明实施例一提供的薄膜晶体管的制作方法流程包括:
S101,在基板10上依次形成主动层20、栅极绝缘层30、栅极60及电容绝缘层40。
基板10为薄膜晶体管整体结构的承载体,一般使用塑料材料或玻璃材料制作基板10,本实施例中,为了提高柔性显示效果,适用于AMOLED柔性显示器,基板10为柔性基板,一种较佳的实施方式中使用塑料材料制作基板10,塑料材料材质柔软易于弯曲,且材料成本低。
本实施例中,在基板10上形成主动层20之前,先在基板10表面形成阻隔层90,阻隔层90位于基板10于主动层20之间。阻隔层90为电绝缘性良好的材料采用化学气相沉积或物理沉积等方法形成。阻隔层90又称缓冲层,用于防止玻璃中的金属离子(铝、钡、钠等)在热工艺中扩散到主动层20,通过调节阻隔层90厚度或沉积条件可以改善多晶硅表面的质量,有利于降低热传导,减缓加热后的硅冷却速率,利于硅的结晶。
进一步的,主动层20形成于阻隔层90的表面,具体的,主动层20采用等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD)形成薄膜于阻隔层90表面,再图像化薄膜形成主动层20。本实施例中采用多晶硅材料形成主动层20,以制作导电性和柔软性均较佳的多晶硅薄膜晶体管,但本发明不限于多晶硅薄膜晶体管。多晶硅材料具有半导体性质,是极为重要的优良半导体材料,故多晶硅薄膜形成的主动层20单向导电性良好,并用于连接后续需要制作的源极802及漏极804,使源极802与漏极804电连接。
本实施例中,栅极绝缘层30形成于主动层20表面,具体的,栅极绝缘层30采用等离子体增强化学气相沉积SiO2形成。进一步的,栅极绝缘层30背离主动层20一侧的表面还形成有栅极60,使用金属材料溅射或沉积于栅极绝缘层30表面形成金属膜层,并采用光刻等刻蚀方法图案化该金属层形成栅极60。栅极绝缘层30位于栅极60与主动层20之间,隔绝栅极60与主动层20,防止栅极60与主动层20短路。
进一步的,电容绝缘层40采用化学气相沉积或物理沉积形成于栅极60表面,一方面,电容绝缘层40用于隔绝栅极60与后续制作的位于栅极60之上的电容上电极502,另一方面,电容绝缘层40作为补氢层为后续氢化处理过程提供氢原子。
S102,在电容绝缘层40之背离基板10一侧形成阻氢层50,阻氢层50覆盖电容绝缘层40。
本实施例中,阻氢层50为致密的无机材料膜层或金属膜层,如Al2O3等。阻氢层50采用化学气相沉积或物理沉积或溅射的方法形成于电容绝缘层40表面,并完全覆盖电容绝缘层40。
S103,氢化处理栅极绝缘层30及主动层20。
具体的,氢化处理的温度不大于500℃,氢化处理的时长不超过60分钟。一种较佳的实施方式中,选择400℃的氢化温度处理栅极绝缘层30及主动层20六十分钟。多晶硅晶粒间存在粒界态,多晶硅(主动层20)与氧化层(栅极绝缘层30)间存在界面态,影响多晶硅薄膜晶体管的电性。氢化处理利用氢原子填补多晶硅原子的未结合键、粒界态、氧化层缺陷以及界面态,从而减少不稳态数目,提升电子迁移率、导电特性及阈值电压均匀性。
电容绝缘层40为氢化处理提供氢原子,减小电容绝缘层40的厚度可以提高柔性显示器的柔软性,但减少了电容绝缘层40可以提供的氢原子数量。阻氢层50防止氢原子向外扩散,阻氢层50阻挡高温氢化过程中向外扩散的氢原子,提高氢原子的利用率,增加参加氢化处理主动层20和栅极绝缘层30的氢原子,提高氢化效果,在提高AMOLED显示器的柔性的同时保证多晶硅薄膜晶体管的氢化处理效果,生产的多晶硅薄膜晶体管的电子迁移率高,显示设备显示效果良好。
本实施例中,阻氢层50为导电材料,如金属等,并且在氢化处理之后,图形化阻氢层50形成电容上电极502。具体的,图形化阻氢层50的方式采用光刻或其他刻蚀方式。电容上电极502与栅极60之间通过电容绝缘层40隔开,防止电容上电极502与绝缘层短路。阻氢层50在图形化之前完全覆盖电容绝缘层40,起到阻挡电容绝缘层40提供的氢原子向外扩散的作用,阻氢层50图形化后形成电容上电极502,多晶硅薄膜晶体管在制造过程中未添加其他膜层,制造的多晶硅薄膜晶体管厚度小,柔软易弯折,提高AMOLED显示器的柔性的同时提高多晶硅薄膜晶体管的氢化处理效果。
本实施例中,形成电容上电极502后,在电容上电极502之背离基板10一侧表面铺设有机材料形成层间绝缘层70,并在层间绝缘层70表面形成源极802及漏极804。有机材料柔软、弯折性好,由于电容绝缘层40提供的氢原子已足够完成对主动层20和栅极绝缘层30的氢化处理,相比现有技术中层间绝缘层70和电容绝缘层40均采用无机材料以起到提供氢原子的作用,本实施例提供的多晶硅薄膜晶体管的层间绝缘层70无需提供氢原子,故可以采用弯折特性更好的有机材料,在满足充分的氢化处理的前提下大大提高了AMOLED显示器的柔性。源极802及漏极804形成于层间绝缘层70的表面,层间绝缘层70隔绝电容上电极502与源极802及漏极804,防止源极802及漏极804与电容上电极502短路。进一步的,源极802及漏极804依次穿过层间绝缘层70、电容绝缘层40及栅极绝缘层30,连接主动层20,以实现源极与漏极的电连接。
电容绝缘层40提供氢原子用于氢化处理主动层20和栅极绝缘层30,阻氢层50阻挡高温氢化过程中向外扩散的氢原子,提高氢原子的利用率,增加参加氢化处理主动层20和栅极绝缘层30的氢原子,提高氢化效果,在提高AMOLED显示器的柔性的同时保证薄膜晶体管的氢化处理效果,生产的薄膜晶体管的电子迁移率高,显示设备显示效果良好。
请参阅图4,本发明实施例二提供的薄膜晶体管的制作方法流程包括:
S201,在基板10上依次形成主动层20、栅极绝缘层30、栅极60及电容绝缘层40。
基板10为薄膜晶体管整体结构的承载体,一般使用塑料材料或玻璃材料制作基板10,本实施例中,为了提高柔性显示效果,适用于AMOLED柔性显示器,基板10为柔性基板,一种较佳的实施方式中使用塑料材料制作基板10,塑料材料材质柔软易于弯曲,且材料成本低。
本实施例中,在基板10上形成主动层20之前,先在基板10表面形成阻隔层90,阻隔层90位于基板10于主动层20之间。阻隔层90为电绝缘性良好的材料采用化学气相沉积或物理沉积等方法形成。阻隔层90又称缓冲层,用于防止玻璃中的金属离子(铝、钡、钠等)在热工艺中扩散到主动层20,通过调节阻隔层90厚度或沉积条件可以改善多晶硅表面的质量;有利于降低热传导,减缓加热后的硅冷却速率,利于硅的结晶。
进一步的,主动层20形成于阻隔层90的表面,具体的,主动层20采用等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD)形成薄膜于阻隔层90表面,再图像化薄膜形成主动层20。本实施例中采用多晶硅材料形成主动层20,以制作导电性和柔软性均较佳的多晶硅薄膜晶体管,但本发明不限于多晶硅薄膜晶体管。多晶硅材料具有半导体性质,是极为重要的优良半导体材料,故多晶硅薄膜形成的主动层20单向导电性良好,并用于连接后续需要制作的源极802及漏极804,使源极于漏极电连接。
本实施例中,栅极绝缘层30形成于主动层20表面,具体的,栅极绝缘层30采用等离子体增强化学气相沉积SiO2形成。进一步的,栅极绝缘层30背离主动层20一侧的表面还形成有栅极60,使用金属材料溅射或沉积于栅极绝缘层30表面形成金属膜层,并采用光刻等刻蚀方法图案化该金属层形成栅极60。栅极绝缘层30位于栅极60与主动层20之间,隔绝栅极60与主动层20,防止栅极60与主动层20短路。
进一步的,电容绝缘层40采用化学气相沉积或物理沉积形成于栅极60表面,一方面,电容绝缘层40用于隔绝栅极60与后续制作的位于栅极60之上的电容上电极502,另一方面,电容绝缘层40作为补氢层为后续氢化处理过程提供氢原子。
S202,在电容绝缘层40之背离基板10一侧形成阻氢层50,阻氢层50覆盖电容绝缘层40。
本实施例中,阻氢层50为致密的无机材料膜层或金属膜层,如Al2O3等。阻氢层50采用化学气相沉积或物理沉积或溅射的方法形成于电容绝缘层40表面,并完全覆盖电容绝缘层40。
S203,氢化处理栅极绝缘层30及主动层20。
具体的,氢化处理的温度不大于500℃,氢化处理的时长不超过60分钟。一种较佳的实施方式中,选择400℃的氢化温度处理栅极绝缘层30及主动层20六十分钟。多晶硅晶粒间存在粒界态,多晶硅(主动层20)与氧化层(栅极绝缘层30)间存在界面态,影响多晶硅薄膜晶体管的电性。氢化处理利用氢原子填补多晶硅原子的未结合键、粒界态、氧化层缺陷以及界面态,从而减少不稳态数目,提升电子迁移率、导电特性及阈值电压均匀性。
电容绝缘层40为氢化处理提供氢原子,减小电容绝缘层40的厚度可以提高柔性显示器的柔软性,但减少了电容绝缘层40可以提供的氢原子数量。阻氢层50防止氢原子向外扩散,阻氢层50阻挡高温氢化过程中向外扩散的氢原子,提高氢原子的利用率,增加参加氢化处理主动层20和栅极绝缘层30的氢原子,提高氢化效果,在提高AMOLED显示器的柔性的同时保证多晶硅薄膜晶体管的氢化处理效果,生产的多晶硅薄膜晶体管的电子迁移率高,显示设备显示效果良好。
S204,沉积导电材料于阻氢层50之背离基板10一侧,并图形化所述导电材料形成电容上电极402。
本实施例中,图形化的方式采用光刻或其他刻蚀方式。电容上电极402与栅极60之间通过电容绝缘层40和阻氢层50隔开,防止电容上电极402与绝缘层短路。阻氢层50在制造过程中起到阻挡电容绝缘层40提供的氢原子向外扩散的作用,不影响多晶硅薄膜晶体管其它膜层的结构和特性,制造方式简单,柔性好,对多晶硅薄膜晶体管的整体制程的影响小,制造的多晶硅薄膜晶体管厚度小,柔软易弯折,提高AMOLED显示器的柔性的同时提高多晶硅薄膜晶体管的氢化处理效果。
本实施例中,形成电容上电极402后,在电容上电极402之背离基板10一侧表面铺设有机材料形成层间绝缘层70,并在层间绝缘层70表面形成源极802及漏极804。有机材料柔软、弯折性好,由于电容绝缘层40提供的氢原子已足够完成对主动层20和栅极绝缘层30的氢化处理,相比现有技术中层间绝缘层70和电容绝缘层40均采用无机材料以起到提供氢原子的作用,本实施例提供的多晶硅薄膜晶体管的层间绝缘层70无需提供氢原子,故可以采用弯折特性更好的有机材料,在满足充分的氢化处理的前提下大大提高了AMOLED显示器的柔性。源极802及漏极804形成于层间绝缘层70的表面,层间绝缘层70隔绝电容上电极402与源极802及漏极804,防止源极802及漏极804与电容上电极402短路。进一步的,源极802及漏极804依次穿过层间绝缘层70、阻氢层50、电容绝缘层40及栅极绝缘层30,连接主动层20,以实现源极与漏极的电连接。
电容绝缘层40提供氢原子用于氢化处理主动层20和栅极绝缘层30,阻氢层50阻挡高温氢化过程中向外扩散的氢原子,提高氢原子的利用率,增加参加氢化处理主动层20和栅极绝缘层30的氢原子,提高氢化效果,在提高AMOLED显示器的柔性的同时保证多晶硅薄膜晶体管的氢化处理效果,生产的多晶硅薄膜晶体管的电子迁移率高,显示设备显示效果良好。
请参阅图5,本发明实施例提供的薄膜晶体管包括基板10及依次层叠设置于基板10一侧的主动层20、栅极绝缘层30、栅极60及电容绝缘层40,本实施例中采用多晶硅材料形成主动层20,以制作导电性和柔软性均较佳的多晶硅薄膜晶体管,但本发明不限于多晶硅薄膜晶体管。薄膜晶体管还包括阻氢层50,阻氢层50位于电容绝缘层40之背离基板10一侧,并覆盖电容绝缘层40,阻氢层50用于阻挡氢化处理时电容绝缘层40提供的氢离子向外扩散。一种较佳的实施方式中,阻氢层50为无机材料膜层或金属材料膜层,如Al2O3等。阻氢层50采用化学气相沉积或物理沉积或溅射的方法形成于电容绝缘层40表面,并完全覆盖电容绝缘层40。电容绝缘层40为氢化处理提供氢原子,减小电容绝缘层40的厚度可以提高柔性显示器的柔软性,但减少了电容绝缘层40可以提供的氢原子数量。阻氢层50防止氢原子向外扩散,阻氢层50阻挡高温氢化过程中向外扩散的氢原子,提高氢原子的利用率,增加参加氢化处理主动层20和栅极绝缘层30的氢原子,提高氢化效果,在提高AMOLED显示器的柔性的同时保证薄膜晶体管的氢化处理效果,生产的薄膜晶体管的电子迁移率高,显示设备显示效果良好。
本实施例中,薄膜晶体管还包括层叠设置于阻氢层50之背离基板10一侧的电容上电极402、层间绝缘层70及源极802及漏极804,层间绝缘层70隔离电容上电极402与源极802及漏极804于层间绝缘层70的两侧。具体的,电容上电极402与栅极60之间通过电容绝缘层40和阻氢层50隔开,防止电容上电极402与绝缘层短路。进一步的,在电容上电极402之背离基板10一侧表面设有层间绝缘层70,并在层间绝缘层70表面形成源极802及漏极804。一种较佳的实施方式中,层间绝缘层70为有机材料膜层,有机材料柔软、弯折性好,由于电容绝缘层40提供的氢原子已足够完成对主动层20和栅极绝缘层30的氢化处理,相比现有技术中层间绝缘层70和电容绝缘层40均采用无机材料以起到提供氢原子的作用,本实施例提供的薄膜晶体管的层间绝缘层70无需提供氢原子,故可以采用弯折特性更好的有机材料,在满足充分的氢化处理的前提下大大提高了AMOLED显示器的柔性。源极802及漏极804形成于层间绝缘层70的表面,层间绝缘层70隔绝源极802及漏极804与电容上电极402,防止源极802及漏极804与电容上电极402短路。进一步的,源极802及漏极804依次穿过层间绝缘层70、电容绝缘层40及栅极绝缘层30,连接主动层20,以实现源极与漏极的电连接。
电容绝缘层40提供氢原子用于氢化处理主动层20和栅极绝缘层30,阻氢层50阻挡高温氢化过程中向外扩散的氢原子,提高氢原子的利用率,增加参加氢化处理主动层20和栅极绝缘层30的氢原子,提高氢化效果,在提高AMOLED显示器的柔性的同时保证薄膜晶体管的氢化处理效果,生产的薄膜晶体管的电子迁移率高,显示设备显示效果良好。
本发明实施例还提供一种显示器,包括以上所述的薄膜晶体管。具体的,显示器为AMOLED柔性显示器。薄膜晶体管位于显示器的阵列基板,通过控制薄膜晶体管的通断状态控制每个像素电极的驱动电压,从而控制每个像素单元的有机发光体的发光状态,控制显示器显示图像。
电容绝缘层40提供氢原子用于氢化处理主动层20和栅极绝缘层30,阻氢层50阻挡高温氢化过程中向外扩散的氢原子,提高氢原子的利用率,增加参加氢化处理主动层20和栅极绝缘层30的氢原子,提高氢化效果,在提高AMOLED显示器的柔性的同时保证薄膜晶体管的氢化处理效果,生产的薄膜晶体管的电子迁移率高,显示设备显示效果良好。
以上所揭露的仅为本发明几种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。