本公开涉及一种显示装置,尤其涉及一种led显示装置。
背景技术:
发光二极管作为无机光源,被多样地用于诸如显示装置、车辆用灯具、一般照明等的多种领域。发光二极管具有寿命长、功耗低且响应速度快的优点,因此正快速地替代现有光源。
另外,现有的发光二极管在显示装置中主要用作背光光源。但是,最近正在开发利用发光二极管来直接实现图像的led显示器。
显示装置通常利用蓝色、绿色及红色的混合色实现多样的颜色。显示装置为了实现多样的图像而包括多个像素,各个像素具有蓝色、绿色及红色的子像素,并且通过这些子像素的颜色来确定特定像素的颜色,并且通过这些像素的组合来实现图像。
led可以根据其材料发出多样的颜色的光,因此可以通过将发出蓝色、绿色及红色的单个led芯片排列于二维平面上来提供显示装置。但是如果在各个子像素排列一个led芯片,则led芯片的数量增加,从而在贴装工序中花费很多时间。
由于将子像素排列在二维平面上,因此包括蓝色、绿色及红色子像素的一个像素占有的面积也相对变宽。因此,为了在有限的面积内排列子像素而需要减小每个led芯片的面积。但是,减小led芯片的尺寸的减小会使led芯片的贴装变得困难,进而导致发光面积减小并降低发光强度。
另外,实现多种颜色的显示装置需要一贯地提供高品质的白光。现有的tv为了实现d65的标准白色光而使用了3:6:1的rgb混合比。即,比起蓝色的发光强度,红色的发光强度相对更高,并且绿色的发光强度相对最高。然而,由于当前使用的led芯片相比于其他led,其蓝色led的发光强度通常相对较高,因此存在利用led芯片的显示装置难以匹配rgb混合比的问题。
并且,当从一个像素内发出的蓝色、绿色及红色光的指向角宽时可能会与相邻的像素产生干涉,进而难以实现清晰的画质。此外,当从一个像素内发出的蓝色、绿色及红色光的指向角彼此不同时,会根据不同的视角而体现出rgb混合比不同的图像。
技术实现要素:
本公开期望解决的技术问题在于提供一种能够在有限的像素面积内增加各个子像素的面积的显示装置。
本公开期望解决的又一技术问题在于提供一种能够缩短贴装工序时间的显示装置。
本公开期望解决的又一技术问题在于提供一种能够容易地控制rgb混合比的显示装置。
本公开期望解决的又一技术问题在于提供一种能够缩小在一个像素内发出的多样的颜色的光的指向角的显示装置。
本公开期望解决的又一技术问题在于提供一种能够使在一个像素内发出的多样的颜色的光的指向角彼此相同的显示装置。
根据本公开的一实施例的显示装置包括:显示基板;多个发光元件,布置于所述显示基板上;以及注塑层,覆盖所述发光元件的侧表面并且暴露其上表面,并且,所述发光元件包括:第一led子单元,第二led子单元,布置于所述第一led子单元上;以及第三led子单元,布置于所述第二led子单元上,其中,所述第三led子单元布置为比所述第一led子单元更近于所述发光元件的上表面。
在一实施例中,所述注塑层可以反射或者吸收从发光元件发出的光而阻挡光。
另外,所述第一led子单元、第二led子单元及第三led子单元可以各自发出红色光、蓝色光及绿色光。
所述第一led子单元可以包括第一发光堆叠件,所述第二led子单元可以包括第二发光堆叠件,所述第三led子单元可以包括第三发光堆叠件,所述第一发光堆叠件、第二发光堆叠件和第三发光堆叠件中的每一个可以包括第一导电型半导体层、活性层及第二导电型半导体层。
在一实施例中,所述注塑层的上表面可以平行于所述第三发光堆叠件的第一导电型半导体层的上表面。
在另一实施例中,所述发光元件还可以包括布置于所述第三led子单元上的基板,所述注塑层的上表面可以平行于所述基板的上表面。
所述发光元件还可以包括:第一接合(bonding)层,夹设在所述第一led子单元与所述第二led子单元之间;以及第二接合层,夹设在所述第二led子单元与所述第三led子单元之间。
并且,所述发光元件还可以包括:第一连接电极,电连接于所述第一led子单元;第二连接电极,电连接于所述第二led子单元;第三连接电极,电连接于所述第三led子单元;以及第四连接电极,与所述第一led子单元、第二led子单元、第三led子单元共同地电连接。
进而,所述发光元件还可以包括:保护层,围绕所述第一连接电极至第四连接电极的至少一部分。
所述保护层可以包括环氧树脂模塑料或者聚酰亚胺膜,并且所述保护层的下表面可以平行于所述第一连接电极至第四连接电极的下表面。
所述显示装置还可以包括:电路基板,夹设在所述显示基板与所述发光元件之间,所述第一连接电极至第四连接电极可以接合于所述电路基板,所述注塑层可以布置于所述电路基板上。
所述第一连接电极、第二连接电极、第三连接电极以及第四连接电极的下表面可以大于各自的上表面。
进而,所述第一连接电极、第二连接电极及第三连接电极分别可以电连接于所述第一发光堆叠件、第二发光堆叠件及第三发光堆叠件的第二导电型半导体层,所述第四连接电极可以与所述第一发光堆叠件至所述第三发光堆叠件的第一导电型半导体层共同地电连接。
另外,所述第一led子单元可以包括:第一导电型半导体层;活性层;第二导电型半导体层;以及上部接触电极,与所述第一导电型半导体层欧姆接触,所述第一导电型半导体层可以包括凹陷的部分,所述上部接触电极可以形成于所述第一导电型半导体层的凹陷的部分内。
并且,所述发光元件可以包括:第一下部接触电极至第三下部接触电极,分别接触于所述第一发光堆叠件至第三发光堆叠件的第二导电型半导体层;以及第一绝缘层,具有使所述第一下部接触电极至第三下部接触电极局部地暴露的第一接触孔至第三接触孔,所述第一绝缘层可以具有布置于所述第一发光堆叠件至第三发光堆叠件的第一导电型半导体层上的子接触孔,所述子接触孔可以彼此隔开。
进而,可以包括:第一垫至第三垫,与所述第一接触孔至第三接触孔重叠;以及第四垫,与所述子接触孔重叠,所述第一连接电极至第四连接电极可以分别电连接于所述第一垫至第四垫。
根据本公开的又一实施例的显示装置包括:显示基板;多个发光元件,布置于所述显示基板上;以及注塑层,覆盖所述发光元件的侧表面并暴露上表面,其中,所述发光元件包括:第一发光堆叠件,发出红色光;第二发光堆叠件,布置于所述第一发光堆叠件上,并且发出蓝色光;以及第三发光堆叠件,布置于所述第二发光堆叠件上,并且发出绿色光,所述第三发光堆叠件布置为接近于所述发光元件的上表面,所述注塑层阻挡从所述第一发光堆叠件至第三发光堆叠件发出的光。
进而,所述发光元件还可以包括布置于所述第三发光堆叠件上的基板,并且所述注塑层可以覆盖所述基板的侧表面并暴露所述基板的上表面。
在一实施例中,所述发光元件还可以包括:第一连接电极至第三连接电极,电连接于所述第一发光堆叠件至第三发光堆叠件的p型半导体层;以及
第四连接电极,与所述第一发光堆叠件至第三发光堆叠件的n型半导体层共同地电连接。
进而,所述发光元件还可以包括:保护层,至少局部地覆盖所述连接电极的侧表面的。
根据本公开的一实施例的显示装置,由于第一led子单元至第三led子单元彼此重叠,因此可以在不增加像素面积的情况下在有限的像素面积内增加各个子像素的面积。
进而,由于发光元件包括第一led子单元至第三led子单元,因此与现有的发光元件相比,能够减少发光元件的数量,因此能够缩短发光元件贴装工序时间。
并且,通过第二led子单元发出蓝光,第三led子单元发出绿光,从而可以提高绿色光的发光强度,据此可以容易地提供适合于显示装置的rgb混合比。
并且,由于注塑层覆盖发光元件的侧表面并暴露其上表面,因此可以缩小从第一led子单元至第三led子单元发出的光的指向角,尤其,可以使从第一led子单元至第三led子单元发出的光的指向角大致相同。
附图说明
图1a是用于说明根据本公开的一实施例的发光元件的示意性的立体图。
图1b是图1a的发光元件的示意性的平面图。
图1c及图1d分别是沿图1b的截取线a-a′及b-b′而获取的示意性的剖面图。
图2是根据本公开的一实施例的发光堆叠结构体的示意性的剖面图。
图3a、图4a、图5a、图6a、图7a及图8a是表示根据示例性实施例的制造图1a的发光元件的过程的平面图。
图3b、图4b、图5b、图6b、图7b及图8b是根据示例性实施例的沿图3a、4a、5a、6a、7a及8a所示的对应平面图的a-a′线的剖面图。
图3c、图4c、图5c、图6c、图7c及图8c是根据示例性实施例的沿图3a、4a、5a、6a、7a及8a所示的对应平面图的b-b′线的剖视图。
图9、图10、图11、图12及图13是示意性示出根据示例性实施例的图1a的发光元件的制造工序的剖面图。
图14、图15及图16a、图16b是示意性示出根据本公开的一实施例的发光封装件的制造工序的剖面图。
图17是用于说明根据本公开的一实施例的显示装置的示意性的剖面图。
图18是用于说明根据本公开的又一实施例的发光封装件的示意性的剖面图。
图19a是表示根据现有技术而不使用注塑层的情况下的发光元件的指向角的曲线图。
图19b是表示根据本公开的一实施例而使用透明注塑层的情况下的发光元件的指向角的曲线图。
图19c是表示在使用根据本公开的一实施例的黑色注塑层的情况下的发光元件的指向角的曲线图。
具体实施方式
以下,参照附图详细说明本公开的实施例。为了能够将本公开的思想充分传递给本公开所属技术领域的通常技术人员,作为示例提供以下介绍的实施例。因此,本公开并不局限于如下所述的实施例,而是可以具体化为其他形态。另外,在附图中,也可能为了便于说明而夸大示出构成要素的宽度、长度、厚度等。并且,当记载为一个构成要素位于另一构成要素的“上部”或“上”时,不仅包括各部分“直接”位于其他部分的“上部”或“上”的情形,还包括各构成要素与另一构成要素之间夹设有又一构成要素的情形。在整个说明书中,相同的附图标记表示相同的构成要素。
根据本公开的一实施例的显示装置包括:显示基板;多个发光元件,布置于所述显示基板上;以及注塑层,覆盖所述发光元件的侧表面并且暴露其上表面,并且,所述发光元件包括:第一led子单元,第二led子单元,布置于所述第一led子单元上;以及第三led子单元,布置于所述第二led子单元上,其中,所述第三led子单元布置为比所述第一led子单元更近于所述发光元件的上表面。
由于第一led子单元至第三led子单元彼此重叠,因此可以在不增加像素面积的情况下在有限的像素面积内增加各个子像素的面积。进而,由于发光元件包括第一led子单元至第三led子单元,因此与现有的发光元件相比,能够减少发光元件的数量,因此能够缩短发光元件贴装工序时间。
并且,由于注塑层覆盖发光元件的侧表面并暴露其上表面,因此可以缩小从第一led子单元至第三led子单元发出的光的指向角,尤其,可以使从第一led子单元至第三led子单元发出的光的指向角大致相同。
在一实施例中,所述注塑层可以反射或者吸收从发光元件发出的光而阻挡光。
另外,所述第一led子单元、第二led子单元及第三led子单元可以各自发出红色光、蓝色光及绿色光。通过第二led子单元发出蓝光,第三led子单元发出绿光,从而可以提高绿色光的发光强度,据此可以容易地提供适合于显示装置的rgb混合比。
所述第一led子单元可以包括第一发光堆叠件,所述第二led子单元可以包括第二发光堆叠件,所述第三led子单元可以包括第三发光堆叠件,各个发光堆叠件可以包括第一导电型半导体层、活性层及第二导电型半导体层。
在一实施例中,所述注塑层的上表面可以平行于所述第三发光堆叠件的第一导电型半导体层的上表面。
在另一实施例中,所述发光元件还可以包括布置于所述第三led子单元上的基板,所述注塑层的上表面可以平行于所述基板的上表面。
所述发光元件还可以包括:第一接合(bonding)层,夹设在所述第一led子单元与所述第二led子单元之间;以及第二接合层,夹设在所述第二led子单元与所述第三led子单元之间。
并且,所述发光元件还可以包括:第一连接电极,电连接于所述第一led子单元;第二连接电极,电连接于所述第二led子单元;第三连接电极,电连接于所述第三led子单元;以及第四连接电极,与所述第一led子单元、第二led子单元、第三led子单元共同地电连接。
进而,所述发光元件还可以包括:保护层,围绕所述第一连接电极至第四连接电极的至少一部分。
所述保护层可以包括环氧树脂模塑料或者聚酰亚胺膜,并且所述保护层的下表面可以平行于所述第一连接电极至第四连接电极的下表面。
所述显示装置还可以包括:电路基板,夹设在所述显示基板与所述发光元件之间,所述第一连接电极至第四连接电极可以接合于所述电路基板,所述注塑层可以布置于所述电路基板上。
所述第一连接电极、第二连接电极、第三连接电极以及第四连接电极的下表面可以大于各自的上表面。
进而,所述第一连接电极、第二连接电极及第三连接电极分别可以电连接于所述第一发光堆叠件、第二发光堆叠件及第三发光堆叠件的第二导电型半导体层,所述第四连接电极可以与所述第一发光堆叠件至所述第三发光堆叠件的第一导电型半导体层共同地电连接。
另外,所述第一led子单元可以包括:第一导电型半导体层;活性层;第二导电型半导体层;以及上部接触电极,与所述第一导电型半导体层欧姆接触,所述第一导电型半导体层可以包括凹陷的部分,所述上部接触电极可以形成于所述第一导电型半导体层的凹陷的部分内。
并且,所述发光元件可以包括:第一下部接触电极至第三下部接触电极,分别接触于所述第一发光堆叠件至第三发光堆叠件的第二导电型半导体层;以及第一绝缘层,具有使所述第一下部接触电极至第三下部接触电极局部地暴露的第一接触孔至第三接触孔,所述第一绝缘层可以具有布置于所述第一发光堆叠件至第三发光堆叠件的第一导电型半导体层上的子接触孔,所述子接触孔可以彼此隔开。
进而,可以包括:第一垫至第三垫,与所述第一接触孔至第三接触孔重叠;以及第四垫,与所述子接触孔重叠,所述第一连接电极至第四连接电极分别电连接于所述第一垫至第四垫。
根据本公开的又一实施例的显示装置包括:显示基板;多个发光元件,布置于所述显示基板上;以及注塑层,覆盖所述发光元件的侧表面并暴露上表面,其中,所述发光元件包括:第一发光堆叠件,发出红色光;第二发光堆叠件,布置于所述第一发光堆叠件上,并且发出蓝色光;以及第三发光堆叠件,布置于所述第二发光堆叠件上,并且发出绿色光,所述第三发光堆叠件布置为接近于所述发光元件的上表面,所述注塑层阻挡从所述第一发光堆叠件至第三发光堆叠件发出的光。
进而,所述发光元件还可以包括布置于所述第三发光堆叠件上的基板,并且所述注塑层可以覆盖所述基板的侧表面并暴露所述基板的上表面。
在一实施例中,所述发光元件还可以包括:第一连接电极至第三连接电极,电连接于所述第一发光堆叠件至第三发光堆叠件的p型半导体层;以及第四连接电极,与所述第一发光堆叠件至第三发光堆叠件的n型半导体层共同地电连接。
进而,所述发光元件还可以包括:保护层,至少局部地覆盖所述连接电极的侧表面。
以下,参照附图对本公开的实施例进行详细说明。以下中,发光堆叠结构体、发光元件或者发光封装件可以包括微型led,这如同在当前技术领域中所知,发光面积为10000μm2以下。作为另一实施例,微型led具有4000μm以下、进而具有2500μm2以下的发光面积。
图1a是用于说明根据本公开的一实施例的发光元件的示意性的立体图,图1b是图1a的发光元件的示意性的平面图,图1c及图1d是各自沿图1b的截取线a-a′及b-b′而获取的示意性的剖面图。
参照图1a以及图1b,发光元件100包括:发光堆叠结构体;第一连接电极20ce、第二连接电极30ce、第三连接电极40ce以及第四连接电极50c,形成在所述发光堆叠结构体上;以及保护层90,围绕所述连接电极20ce、30ce、40ce、50ce。在基板11上可以形成有发光元件100的阵列,并且在图1a中示例性示出的发光元件100示出从所述阵列单一化的发光元件,因此可以被命名为发光元件。对于发光元件100的形成以及单一化将在后文中进行详细说明。在若干实施例中,包括发光堆叠结构体的发光元件100可以被额外处理为形成发光封装件,对此也将在后文中进行详细说明。
参照图1a以及图1d,根据示出的实施例的发光元件100包括发光堆叠结构体,可以包括布置在基板上的第一led子单元、第二led子单元以及第三led子单元。第一led子单元可以包括第一发光堆叠件20,第二led子单元可以包括第二发光堆叠件30,第三led子单元可以包括第三发光堆叠件40。针对所述发光堆叠结构体示出了三个发光堆叠件20、30、40,但是本公开并不局限于特定数量的发光堆叠件。例如,在若干实施例中,发光堆叠结构体可以包括两个或者更多数量的发光堆叠件。这里针对发光元件100根据一实施例而包括三个发光堆叠件20、30、40的发光堆叠结构体进行说明。
基板11为了透射光而可以包括光透射绝缘物质。但是,在若干实施例中,基板11可以形成为半透明或者部分透明,以便仅透射特定波长的光或者仅透射特定波长的光的一部分。基板11可以是能够外延生长第三发光堆叠件40的生长基板,例如,可以是蓝宝石基板。然而,基板11并不局限于蓝宝石基板,可以包括其他多样的透明绝缘物质。例如,基板11可以包括玻璃、石英、硅、有机高分子或者有机-无机复合材料,例如,可以是碳化硅(sic)、氮化镓(gan)、氮化铟镓(ingan)、氮化铝镓(algan)、氮化铝(aln)、氧化镓(ga2o3)或者硅基板。此外,基板11可以在上表面包括凹凸,例如,可以是图案化的蓝宝石基板。可以通过在上表面包括凹凸来提高在与基板11接触的第三发光堆叠件40中生成的光的提取效率。基板11的凹凸可以为了与第一发光堆叠件20以及第二发光堆叠件30相比选择性地增加第三发光堆叠件40的发光强度而被采用。另外,作为另一实施例,基板11可以被去除。如下面所述,通过去除基板11,可以缩小从第一发光堆叠件至第三发光堆叠件20、30、40发出的光的指向角。
第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40构成为向基板11发出光。因此,从第一发光堆叠件20发出的光可以通过第二发光堆叠件30以及第三发光堆叠件40。根据一实施例,第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40可以发出彼此不同的峰值波长的光。在一实施例中,距离基板11较远的发光堆叠件比起较近的发光堆叠件发出更长波长的光,从而能够减少光损失。在另一实施例中,为了调节第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40的颜色混合比,第二发光堆叠件30相比于第三发光堆叠件40可以发出更短波长的光。据此,可以减小第二发光堆叠件30的发光强度,并且可以增加第三发光堆叠件40的发光强度,因此,可以显著地变更从第一发光堆叠件、第二发光堆叠件以及第三发光堆叠件发出的光的发光强度比。例如,可以构成为第一发光堆叠件20发出红色光、第二发光堆叠件30发出蓝色光、第三发光堆叠件40发出绿色光。据此,可以相对减小蓝色光的发光强度,相对增加绿色光的发光强度,因此可以容易地将红色、绿色以及蓝色的发光强度比调节为接近3:6:1。此外,第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40的发光面积可以是约为10000μm2以下,进而可以为4000μm2以下,更进一步可以为2500μm2以下。此外,越靠近基板11,发光面积可以越大,通过将发出绿色光的第三发光堆叠件40布置为最接近基板11而进一步增加绿色光的发光强度。
第一发光堆叠件20包括第一导电型半导体层21、活性层23以及第二导电型半导体层25。根据一实施例,第一发光堆叠件20例如可以包括诸如algaas、gaasp、algainp以及gap的发出红色光的半导体物质,但并不局限于此。
第一上部接触电极21n布置在第一导电型半导体层21之上,并且可以与第一导电型半导体层21形成欧姆接触。第一下部接触电极25p可以布置在第二导电型半导体层25之下。根据一实施例,第一导电型半导体层21的一部分可以被图案化而被凹陷,第一上部接触电极21n为了增加欧姆接触程度而布置在第一导电型半导体层21的凹陷的区域。第一上部接触电极21n可以具有单层结构或者多层结构,可以包括al、ti、cr、ni、au、ag、sn、w、cu或者它们的合金,例如,au-te合金或者au-ge合金,但并不局限此。在一实施例中,第一上部接触电极21n可以具有约100nm的厚度,可以为了朝向基板11而向下方增加发光效率而包括具有高反射率的金属。
第二发光堆叠件30包括第一导电型半导体层31、活性层33以及第二导电型半导体层35。根据一实施例,第二发光堆叠件30可以包括诸如gan、ingan、znse等的发出蓝色光的半导体物质,但并不局限此。第二下部接触电极35p布置在第二发光堆叠件30的第二导电型半导体层35之下。
第三发光堆叠件40包括第一导电型半导体层41、活性层43以及第二导电型半导体层45。根据一实施例,第三发光堆叠件40可以包括诸如gan、ingan、gap、algainp、algap等的发出绿色光的半导体物质。第三下部接触电极45p布置在第三发光堆叠件40的第二导电型半导体层45之上。
根据一实施例,第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40的第一导电型半导体层21、31、41以及第二导电型半导体层25、35、45中的每一个具有单层结构或者多层结构,在若干实施例中,可以包括超晶格层。此外,第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40的活性层23、33、43可以具有单量子阱结构或者多量子阱结构。
第一下部接触电极25p、第二下部接触电极35p以及第三下部接触电极45p中的每一个可以包括透射光的透明导电物质。例如,下部接触电极25p、35p、45p可以包括透明导电性氧化物(tco),例如,sno、ino2、zno、ito、itzo等,但并不限局限此。
第一粘合层61布置在第一发光堆叠件20与第二发光堆叠件30之间,第二粘合层63布置在第二发光堆叠件30与第三发光堆叠件40之间。第一粘合层61以及第二粘合层63可以包括透射光的非导电性物质。例如,第一粘合层61以及第二粘合层63可以包括光学透明的粘合剂(oca),其可以包括环氧树脂、聚酰亚胺、su8、旋涂玻璃(sog)、苯并环丁烯(bcb),并且不局限于此。
根据示出的实施例,第一绝缘层81以及第二绝缘层83布置在第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40的侧面的至少一部分上。第一绝缘层81以及第二绝缘层83中的至少一个可以包括多样的有机或者无机绝缘物质,例如聚酰亚胺、sio2、sinx、al2o3等。例如,第一绝缘层81以及第二绝缘层83中的至少一个可以包括分布式布拉格反射器(dbr)。作为另一实施例,第一绝缘层81以及第二绝缘层83中的至少一个可以包括黑色有机聚合物。在若干实施例中,电浮置的金属反射层布置在第一绝缘层81以及第二绝缘层83之上,以将从发光堆叠件20、30、40发出的光向基板11侧反射。在若干实施例中,第一绝缘层81以及第二绝缘层83中的至少一个可以具有单层结构或者由具有互不相同的折射率的两个以上的绝缘层形成的多层结构。
根据一实施例,第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40中的每一个可以被独立地驱动。更具体地,可以对各个发光堆叠件的第一导电型半导体层以及第二导电型半导体层中的一个施加共同电压,并且可以对各个发光堆叠件的第一导电型半导体层以及第二导电型半导体层中的另一个施加单独的发光信号。例如,根据本公开的实施例,各个发光堆叠件的第一导电型半导体层21、31、41可以是n型,并且第二导电型半导体层25、35、45可以是p型。此时,第三发光堆叠件40与第一发光堆叠件20以及第二发光堆叠件30相比可以具有相反的叠层序列,据此,p型半导体层45布置在活性层43的上部,从而可以简化制造工艺。以下,根据示出的实施例,可以将第一导电型半导体层以及第二导电型半导体层分别替换为n型以及p型来表示。此外,n型和p型可以互换。
分别连接到发光堆叠件的p型半导体层25、35、45的第一下部接触电极25p、第二下部接触电极35p以及第三下部接触电极45p中的每一个可以电连接于第一连接电极20ce、第二连接电极30ce以及第三连接电极40ce,从而分别接收对应的发光信号。另外,发光堆叠件的n型半导体层21、31、41共同电连接到第四连接电极50ce。据此,发光元件100可以具有第一发光堆叠件20、第二发光堆叠件30、第三发光堆叠件40的n型半导体层21、31、41共同连接的共同n型发光堆叠结构体,并且可以独立地驱动。由于具有共同n型发光堆叠结构体,因此可以使施加于第一发光堆叠件20、第二发光堆叠件30、第三发光堆叠件40的电压源彼此不同。
根据示出的实施例的发光元件100具有共同的n型结构,但是本公开并不局限于此。例如,在部分示例性实施例中,各个发光堆叠件的第一导电型半导体层21、31、41可以是p-型,各个发光堆叠件的第二导电型半导体层25、35、45可以是n型,因此,可以形成共同的p型发光堆叠结构。此外,在若干实施例中,各个发光堆叠件的叠层序列并不限于附图中示出的叠层序列,而是可以实现多样的变更。以下,针对根据本公开的一实施例的发光元件100参照共同的n型发光堆叠结构而进行说明。
根据示出的实施例,第一接触部20c包括第一垫20pd、第二垫30pd、第三垫40pd以及第四垫50pd。第一垫20pd通过由第一绝缘层81而定义的第一接触孔20ch电连接于第一下部接触电极25p。第一连接电极20ce通过由第二绝缘层83而定义的第一贯通孔20ct电连接于第一垫20pd。第二垫30pd通过由第一绝缘层81而定义的第二接触孔30ch电连接于第二下部接触电极35p。第二连接电极30ce通过由第二绝缘层83而定义的第二贯通孔30ct电连接于第二垫30pd。
第三垫40pd通过由第一绝缘层81而定义的第三接触孔40ch电连接于第三下部接触电极45p。第三连接电极40ce通过由第二绝缘层83而定义的第三贯通孔40ct电连接于第三垫40pd。第四垫50pd通过在第一发光堆叠件20、第二发光堆叠件30、第三发光堆叠件40的第一导电型半导体层21、31、41上定义的第一子接触孔50cha、第二子接触孔50chb以及第三子接触孔50chc连接于第一发光堆叠件20、第二发光堆叠件30、第三发光堆叠件40的第一导电型半导体层21、31、41。尤其,第一子接触孔50cha可以暴露第一上部接触电极21n,第四垫50pd可以通过第一子接触孔50cha连接于第一上部接触电极21n。通过这种方式,第四垫50pd可以通过子接触孔50cha、50chb、50chc而电连接于第一导电型半导体层21、31、41,从而可以简化发光元件100的制造工序。第四连接电极50ce可以通过由第二绝缘层83而定义的第四贯通孔50ct电连接于第四垫50pd。
在本实施例中,虽然示出并说明为连接电极20ce、30ce、40ce、50ce分别直接接触于垫20pd、30pd、40pd、50pd,然而连接电极20ce、30ce、40ce、50ce也可以不直接连接于垫20pd、30pd、40pd、50pd,而是在其中夹设有连接器。
第一垫20pd、第二垫30pd、第三垫40pd和第四垫50pd彼此隔开并且彼此绝缘。根据一个实施例,第一垫20pd、第二垫30pd、第三垫40pd和第四垫50pd可以分别覆盖第一发光堆叠件20、第二发光堆叠件30和第三发光堆叠件40的侧表面的至少一部分。据此,可以使从第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40产生的热的发散变得容易。
根据示出的实施例,各个连接电极20ce、30ce、40ce以及50ce可以具有从基板11向上突出的实质上较长的形状。连接电极20ce、30ce、40ce以及50ce可以包括诸如cu、ni、ti、sb、zn、mo、co、sn、ag或者这些的合金的金属,但并不局限于此。例如,连接电极20ce、30ce、40ce、50ce中的每一个为了减小来自连接电极20ce、30ce、40ce以及50ce的较长的形状的应力而可以包括两个以上的金属或者多个不同的金属层。在另一实施例中,当连接电极20ce、30ce、40ce以及50ce包括cu时,可以为了抑制cu的氧化而沉积或者镀覆附加的金属。在若干实施例中,当连接电极20ce、30ce、40ce以及50ce包括cu/ni/sn时,cu可以防止sn渗透到发光堆叠结构。在若干实施例中,连接电极20ce、30ce、40ce、50ce可以包括用于在镀覆金属的过程中形成金属层的种子层,对此将进行后述。
如图所示,各个连接电极20ce、30ce、40ce以及50ce可以具有实质上平坦的上部表面,因此能够使后述的外部线或者电极与发光堆叠结构物之间的电连接变得容易。根据本公开的一实施例,当发光元件100包括如本领域公知的表面积约小于10000μm2(或者在其他实施例中,约小于4000μm2或者约小于2500μm2)的微型led时,连接电极20ce、30ce、40ce、50ce可以如图所示地与第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40中的至少一个的一部分重叠。更具体地,连接电极20ce、30ce、40ce以及50ce可以与形成在发光堆叠结构物的侧面的至少一个的台阶重叠。如上所述,由于连接电极的下表面的面积大于上表面的面积,因此连接电极20ce、30ce、40ce、50ce与发光堆叠结构之间可以形成更大的接触面积。据此,在发光堆叠结构体上可以更加稳定地形成连接电极20ce、30ce、40ce、50ce。例如,连接电极20ce、30ce、40ce、50ce的朝向外部的一侧面的长度l1、l2、l3以及l4可以不同于朝向发光元件100的中心的一侧面的长度l1′、l2′、l3′、l4′。更具体地,连接电极的朝向外部的一侧面的长度可以大于朝向发光元件100的中心的另一侧面的长度。例如,两个对向表面的长度(l和l′)之差可以大于发光堆叠件20、30以及40中的一个的厚度(或者高度)。通过这种方式,发光元件100的结构可以在连接电极20ce、30ce、40ce以及50ce与发光堆叠结构体之间强化为更大的接触面积。此外,由于连接电极20ce、30ce、40ce、50ce可以与形成在发光堆叠结构体的侧面的至少一个台阶重叠,因此能够使从发光堆叠结构体产生的热量更有效地发散到外部。
根据示例性的实施例,连接电极的朝向外部的一侧面的长度l1、l2、l3或者l4与朝向发光元件100的中心的另一侧面的长度l1′、l2′、l3′以及l4′之差可以约为3μm。此时,发光堆叠结构体可以形成得较薄,尤其是第一发光堆叠件20可以具有约1μm的厚度,第二发光堆叠件30可以具有约0.7μm的厚度,第三发光堆叠件40可以具有约0.7μm的厚度,第一粘合剂层以及第二粘合剂层可以分别具有约0.2μm至0.3μm的厚度,但并不局限于此。根据另一实施例,连接电极的朝向外部的一侧面的长度l1、l2、l3或者l4与朝向发光元件100的中心的另一侧面的长度l1′、l2′、l3′、l4′之差可以约为10μm至16μm。此时,发光堆叠结构形成为具有相对较厚并且更加稳定的结构,尤其,第一发光堆叠件20可以具有约4μm至约5μm的厚度,第二发光堆叠件30可以具有约3μm的厚度,第三发光堆叠件40可以具有约3μm的厚度,并且第一粘合层以及第二粘合层的厚度分别可以是约3μm,但并不局限于此。根据又另一实施例,连接电极的朝向外部的一侧面的长度l1、l2、l3或者l4与朝向发光元件100的中心的另一侧面的长度l1′、l2′、l3′以及l4′之差可以是最长侧面长度的约25%。但是,本公开的概念并不限定于连接电极的对向表面之间的长度的特定差,连接电极的对向表面之间的长度差可以实现变更。
在部分示例性的实施例中,连接电极20ce、30ce、40ce以及50ce中的至少一个可以与各个发光堆叠件20、30以及40的侧面重叠,因此发光堆叠件20、30、40将从内部产生的热量有效地发散到外部。此外,当连接电极20ce、30ce、40ce、50ce包括如金属等反射性物质时,连接电极20ce、30ce、40ce、50ce可以反射从至少一个发光堆叠件20、30、40发出的光,因此能够改善发光效率。
通常,在制造期间,多个发光元件的阵列形成在基板上。基板沿切割线被切割而使各个发光元件个体化(分离),发光元件为了进行诸如封装的发光元件的追加处理而可以使用多样的移送技术而被移送到另一基板或者带中。此时,当发光元件包括从发光结构向外突出的诸如金属凸块或者柱的连接电极时,源于将所述连接电极向外部暴露的发光元件的结构,在后续工艺(例如,转印步骤)期间,可能发生多样的问题。此外,当发光元件根据应用领域而包括具有约小于10000μm2或者约小于4000μm2或者约小于2500μm2的表面积的微型led时,发光元件的处理因小的尺寸而更加困难。
例如,当连接电极具有诸如杆的实质上较长的形状时,由于发光元件因连接电极的突出结构而不能具有充分的吸附面积,因此使用现有的真空方法来转印发光元件会变得困难。此外,暴露的连接电极在诸如连接电极与制造装置接触时等后续工艺期间会因应力而受到直接影响,这可能损伤发光元件的结构。作为另一示例,通过在发光元件的上部表面(例如,与基板对向的表面)上附着粘合带来转印发光元件时,发光元件与粘合带之间的接触面积可能限制在连接电极的上端表面中。此时,与粘合带附着在发光元件(例如,基板)的下部表面时相反,发光元件对粘合带的附着力可能减弱,并且在转印期间发光元件可能不期望地从粘合带分离。作为另一示例,当利用现有的拾取和放置(pick-and-place)方法来转印发光元件时,顶出销(ejectorpin)直接接触到布置在连接销之间的发光元件的一部分,从而发光结构物的上部结构可能会损坏。尤其,顶出销可能撞击到发光元件的中心,从而可能对发光元件的上部发光堆叠件造成物理损伤。
根据本公开的一实施例,所述保护层90可以形成在所述发光堆叠结构体上。更具体地,如附图1a中所示,保护层90形成在连接电极20ce、30ce、40ce、50ce之间并至少覆盖发光堆叠结构体的侧面。根据示出的实施例,保护层90可以暴露基板11、第一绝缘层81、第二绝缘层83以及第三发光堆叠件40的侧面。保护层90实质上平行于连接电极20ce、30ce、40ce以及50ce的上表面地形成,可以包括环氧模塑料(emc),这可以形成为诸如黑色、白色或者透明之类的多样的颜色。但是本公开并不局限于此。例如,在若干实施例中,保护层90可以包括聚酰亚胺(pid),此时,当pid应用到发光堆叠结构体时,为了增加平坦度而提供为干膜而不是液体型。在若干实施例中,保护层90可以包括具有感光性的物质。通过这种方式,保护层90不仅可以保护发光结构体免受在后续工艺期间可能被施加的外部冲击的影响,而且可以对发光元件100提供充分的接触面积以使在后续转印步骤期间的处理更加容易。此外,保护层90防止从发光元件100的侧面的光泄漏,从而可以对从相邻的发光元件100发出的光的干扰进行防止,或者至少可以进行抑制。
图2是根据本公开的一实施例的发光堆叠结构体的示意性的剖面图。根据示出的实施例的发光堆叠结构体与包括在前述的发光元件100的发光堆叠结构体实质上相同,因此为了避免重复将省略对形成实质上相同的发光堆叠结构体的构成的说明。
参照图2,根据本公开的一实施例的第一下部接触电极25p、第二下部接触电极35p以及第三下部接触电极45p可以分别连接到发光信号线sr、sg、sb。第一发光堆叠件20的第一导电型半导体层21、第二发光堆叠件30的第一导电型半导体层31以及第三发光堆叠件40的第一导电型半导体层41可以连接到公共线sc。公共线sc可以通过第一上部接触电极21n连接到第一发光堆叠件20的第一导电型半导体层21。
本公开的一实施例通过采用公共n结构,从而可以向第一发光堆叠件20、第二发光堆叠件30、第三发光堆叠件40施加彼此不同的电压。例如,与发出蓝色光及绿色光的第二发光堆叠件30及第三发光堆叠件40相比,发出红色光的第一发光堆叠件20可以施加相对较低的电压。因此,可以将适合于各个发光堆叠件的电压源分别独立地使用,从而可以减少电力损失。在示出的示例性实施例中,利用发光信号线sr、sg、sb和公共线sc,第一发光堆20、第二发光堆30、第三发光堆40可以分别独立地被控制,从而选择性地发出光。
图2示出具有公共n结构的发光堆叠结构体,但是本公开并不局限于此。例如,在部分示例性实施例中,公共线sc电连接于第一发光堆叠件20的下部接触电极25p、第二发光堆叠件30的下部接触电极35p以及第三发光堆叠件40的下部接触电极45p,发光信号线sr、sg、sb可以分别电连接于第一发光堆叠件20的第一导电型半导体层21、第二发光堆叠件30的第一导电型半导体层31以及第三发光堆叠件40的第一导电型半导体层41。
根据本公开的一实施例的发光堆叠结构体根据各个发光堆叠件20、30、40的操作状态来显示多样的颜色的光,相反,现有的发光元件通过发出单色的光的多个发光单元的组合显示多样的颜色的光。更具体地,现有的发光元件通常为了实现全色显示装置而包括在2维平面上相互隔开并分别发出不同颜色(例如红色、绿色以及蓝色)的光的发光单元。以这种方式,基于现有的发光单元而占据较大的面积。但是,根据本公开的一实施例的发光堆叠结构体能够将多个发光堆叠件20、30、40进行叠层来发出互不相同的颜色的光,因此相比于现有的发光装置,能够通过更小的面积来提供高水准的集成并实现全色。
此外,当发光元件100为了制造显示装置而被贴装到另一基板时,例如要安装的元件的数量比起现有的发光元件可能会大大减少。以这种方式,特别是当在一个显示装置中形成数十万或者数百万个像素时,实质上可以简化使用发光元件100的显示装置的制造。
根据示例性的实施例,发光堆叠结构体为了改善从其发出的光的纯度以及效率而还可以包括多样的附加构成要素。例如,在部分示例性的实施例中,在发光堆叠件之间可以布置有波长通过过滤器。在若干实施例中,为了实现发光堆叠件之间的光的亮度的平衡,在至少一个的发光堆叠件的发光表面上可以形成有凹凸部。例如,需要增加绿色光的发光强度以使rgb的发光强度混合比接近3:6:1,为此,在基板11表面上可以形成凹凸。
以下,参照附图针对根据本公开的一实施例的发光元件100的形成方法进行说明。
图3a、图4a、图5a、图6a、图7a及图8a是表示根据示例性实施例的制造图1a的发光元件的过程的平面图。图3b、图4b、图5b、图6b、图7b及图8b是根据示例性实施例的沿图3a、4a、5a、6a、7a及8a所示的对应平面图的a-a′线的剖面图。图3c、图4c、图5c、图6c、图7c及图8c是根据示例性实施例的沿图3a、4a、5a、6a、7a及8a所示的对应平面图的b-b′线的剖面图。图9、图10、图11、图12及图13是示意性示出根据示例性实施例的图1a的发光元件的制造工序的剖面图。
重新参照图2,第三发光堆叠件40的第一导电型半导体层41、第三活性层43以及第二导电型半导体层45例如可以通过金属有机化学气相沉积(mocvd)方法或者分子束外延(mbe)方法在基板上依次生长。第三下部接触电极45p例如可以通过物理气相沉积法或者化学气相沉积法形成在第三p型半导体层45上,并且可以包括sno、ino2、zno、ito、itzo等的透明导电性氧化物(tco)。当根据本公开的一实施例的第三发光堆叠件40发出绿色光时,基板11可以包括a12o3(例如,蓝宝石基板),并且第三下部接触电极45p可以包括诸如氧化锡之类的透明导电性氧化物(tco)。第一发光堆叠件20以及第二发光堆叠件30可以分别通过在临时基板上依次生长第一导电型半导体层、活性层以及第二导电型半导体层来类似地形成。包括透明导电性氧化物(tco)的下部接触电极例如可以通过物理气相沉积法或者化学气相沉积法等来分别形成在第二导电型半导体层上。另外,第一发光堆叠件20以及第二发光堆叠件30将第一粘合层61置于其之间而相互结合,并且在第一发光堆叠件20以及第二发光堆叠件30的临时基板中至少有一个可以通过激光剥离工艺、化学工艺、机械工艺来去除。并且,第一发光堆叠件20以及第二发光堆叠件30与第三发光堆叠件40将第二粘合层63置于之间而相互结合,并且在第一发光堆叠件20以及第二发光堆叠件30的剩余临时基板可以通过激光剥离工艺、化学工艺、机械工艺来去除。
参照图3a、图3b及图3c,第一发光堆叠件20、第二发光堆叠件30以及第三发光堆叠件40中的每一个的多样的部分可以通过蚀刻工艺而被图案化,从而暴露第一导电型半导体层21、第一下部接触电极25p、第一导电型半导体层31、第二下部接触电极35p、第三下部接触电极45p以及第一导电型半导体层41的一部分。根据示出的实施例,第一发光堆叠件20在发光堆叠件20、30、40中具有最小的面积。另一方面,第三发光堆叠件40在发光堆叠件20、30、40中可以具有最大的面积,因此,能够相对增加第三发光堆叠件40的发光强度。然而,本公开的概念并不特别受限于发光堆叠件20、30以及40的相对尺寸。
参照图4a、图4b及图4c,第一发光堆叠件20的第一导电型半导体层21的上表面的一部分为了形成第一上部接触电极21n而可以通过湿蚀刻被图案化。如上所述,第一上部接触电极21n在第一导电型半导体层21的凹陷的区域中形成为约100nm的厚度,从而例如可以提高它们之间的欧姆接触。
参照图5a以及图5b,第一绝缘层81可以形成为覆盖发光堆叠件20、30、40,并且为了形成第一接触孔20ch、第二接触孔30ch、第三接触孔40ch以及第四接触孔50ch,第一绝缘层81的一部分可以被去除。第一接触孔20ch被定义在第一下部接触电极25p上而暴露第一下部接触电极25p的一部分。第二接触孔30ch可以被定义在第二下部接触电极35p上而暴露第二下部接触电极35p的一部分。第二接触孔30ch可以被定义在第二下部接触电极35p上而暴露第二下部接触电极35p的一部分。
第四接触孔50ch提供用于允许电连接于第一发光堆叠件20的第一导电型半导体层21、第二发光堆叠件30的第一导电型半导体层31以及第三发光堆叠件40的第一导电型半导体层41的通路。第四接触孔50ch可以包括第一子接触孔50cha、第二子接触孔50chb和第三子接触孔50chc。第一子接触孔50cha可以被定义在第一导电型半导体层21上而暴露第一上部接触电极21n的一部分,第二子接触孔50chb可以被定义在第一导电型半导体层31上而暴露第一导电型半导体层31的一部分,第三子接触孔50chc可以被定义在第一导电型半导体层41上而暴露第一导电型半导体层41的一部分。
参照图6a、图6b及图6c,第一垫20pd、第二垫30pd、第三垫40pd以及第四垫50pd形成在形成为具有第一接触孔20ch、第二接触孔30ch、第三接触孔40ch以及第四接触孔50ch的第一绝缘层81上。第一垫20pd、第二垫30pd、第三垫40pd以及第四垫50pd例如可以通过实质上通过在基板的前表面上形成导电层并使用光刻工艺对导电层进行图案化而形成。
第一垫20pd形成为与形成有第一接触孔20ch的区域重叠,从而可以通过第一接触孔20ch连接于第一下部接触电极25p。第二垫30pd形成为与形成有第二接触孔30ch的区域重叠,从而可以通过第二接触孔30ch连接于第二下部接触电极35p。第三垫40pd可以形成为与形成第三接触孔40ch的区域重叠,从而可以通过第三接触孔40ch连接到第三下接触电极45p。第四垫50pd是形成为与形成有第四接触孔50ch的区域(尤其是形成有第一子接触孔50cha、第二子接触孔50chb及第三子接触孔50chc的区域)重叠,从而可以电连接于第一发光堆叠件20的第一导电型半导体层21、第二发光堆叠件30的第一导电型半导体层31以及第三发光堆叠件40的第一导电型半导体层41。
参照图7a、7b及图7c,第二绝缘层83可以形成在第一绝缘层81上。第二绝缘层83可以包括硅氧化物和/或硅氮化物。但是本公开并不局限于此,在若干实施例中,第一绝缘层81以及第二绝缘层83可以包括无机物质。随后,第二绝缘层83可以被图案化而形成暴露第一垫20pd、第二垫30pd、第三垫40pd、第四垫50pd的第一贯通孔20ct、第二贯通孔30ct、第三贯通孔40ct以及第四贯通孔50ct。
形成在第一垫20pd上的第一贯通孔20ct暴露第一垫20pd的一部分。形成在第二垫30pd上的第二贯通孔30ct暴露第二垫30pd的一部分。形成在第三垫40pd上的第三贯通孔40ct暴露第三垫40pd的一部分。形成在第四垫50pd上的第四贯通孔50ct暴露第四垫50pd的一部分。在图示出的示例性的实施例中,第一贯通孔20ct、第二贯通孔30ct、第三贯通孔40ct以及第四贯通孔50ct可以分别被定义在形成有第一垫20pd、第二垫30pd、第三垫40pd以及第四垫50pd的区域内。
参照图8a、图8b及图8c,在形成有第一贯通孔20ct、第二贯通孔30ct、第三贯通孔40ct以及第四贯通孔50ct的第二绝缘层83上形成第一连接电极20ce、第二连接电极30ce、第三连接电极40ce以及第四连接电极50ce。第一连接电极20ce形成为与形成有第一贯通孔20ct的区域重叠,从而可以通过第一贯通孔20ct连接到第一垫20pd。第二连接电极30ce形成为与形成有第二贯通孔30ct的区域重叠,从而可以通过第二贯通孔30ct连接到第二垫30pd。第三连接电极40ce形成为与形成有第三贯通孔40ct的区域重叠,从而可以通过第三贯通孔40ct连接到第三垫40pd。第四连接电极50ce形成为与形成有第四贯通孔50ct的区域重叠,从而可以通过第四贯通孔50ct连接到第四垫50pd。
第一连接电极20ce、第二连接电极30ce、第三连接电极40ce、第四连接电极50ce相互隔开,并且可形成于发光堆叠结构体上。第一连接电极20ce、第二连接电极30ce、第三连接电极40ce、第四连接电极50ce分别电连接于第一垫20pd、第二垫30pd、第三垫40pd、第四垫50pd,从而可以将外部信号传输至各个发光堆叠件20、30、40。
形成第一连接电极20ce、第二连接电极30ce、第三连接电极40ce以及第四连接电极50ce的方法不特别地受限。例如,根据本公开的一实施例,在发光堆叠结构体上将种子层作为导电性表面而被沉积,并且可以以在将要形成连接电极的位置暴露种子层的方式形成光刻胶图案。根据一实施例,所述种子层可以沉积为约
根据示出的示例性的实施例,各个连接电极20ce、30ce、40ce以及50ce可以具有实质上较长的形状,以便远离基板11。在另一示例性的实施例中,为了减小来自连接电极20ce、30ce、40ce、50ce的较长的形状的应力,连接电极20ce、30ce、40ce可以包括两个以上的金属或者多个不同的金属层。但是本公开并不受限于连接电极20ce、30ce、40ce、50ce的特定形状,在若干实施例中,连接电极可以具有多样的形状。
如图所示,为了使发光堆叠结构体与外部线或者电极之间的电连接更加容易,各个连接电极20ce、30ce、40ce以及50ce可以具有实质上平坦的上部表面。连接电极20ce、30ce、40ce、50ce可以与形成在发光堆叠结构体的侧面的至少一个的台阶重叠。通过这种方式,连接电极的下部表面可以具有比上部表面更大的宽度,并且在连接电极20ce、30ce、40ce以及50ce与发光堆叠结构体之间提供更大的接触面积,从而使发光元件100具有能够与保护层90一起经受多样的后续工艺的更加稳定的结构。此时,连接电极20ce、30ce、40ce以及50ce的朝向外部的一侧面的长度l1至l4可以不同于朝向发光元件100的中心的另一表面的长度l1’至l’4。例如,连接电极的两个对向面之间的长度差可以是3至16μm,但是并不局限于此。
另外,在连接电极20ce、30ce、40ce、50ce之间布置有保护层90。保护层90可以通过抛光工艺而形成为实质上平行于连接电极20ce、30ce、40ce、50ce的上表面。根据一实施例,保护层90可以包括黑色环氧模塑料(emc),但是并不局限于此。例如,在若干实施例中,保护层90可以包括具有感光性的聚酰亚胺膜(pid)。通过这种方式,保护层90不仅可以保护发光结构体免受在后续工艺期间可能应用到的外部冲击的影响,而且可以对发光元件100提供充分的接触面积,以使在后续转印步骤期间的处理更加容易。此外,保护层90防止光泄漏到发光元件100的侧面,从而可以对从相邻的发光元件100发出的光的干扰进行防止,或者至少可以进行抑制。
图9是示例性地示出布置在基板11上的多个发光元件100,为了分离各个发光元件100而经过单一化工艺。参照图10,根据本公开的一实施例,在所述发光堆叠结构体之间照射激光束(laserbeams),从而形成局部地分离发光堆叠结构体的分离路径。参照图11,可以利用隐形激光在基板11内追加分离路径。隐形激光可以从与图10的激光照射面相反的方向照射。
参照图12,为了在基板11附着于第一接合层95的状态下将各个发光元件100单一化,使用本领域公知的多样的方法来将其切断或者分离。例如,基板11通过形成在其上的切割线来进行切割而切断基板11,或者例如沿着在激光辐射工艺期间内形成的分离路径来施加机械力而分离基板11。第一接合层95可以是胶带,但是只要在后续工艺中第一接合层95能够稳定地附着于发光元件100并分离发光元件100,则本公开就不受限于此。尽管在上文中将第一接合层95描述为在激光辐射步骤之后附着到基板上,但是在部分示例性的实施例中,第一接合层95可以在激光辐射步骤之前附着到基板11上。
参照图13,在基板11被分离为单独的发光元件100之后,第一接合层95可以扩张,据此,发光元件100可以彼此在空间上隔开。
图14、图15、及图16是示意性地示出根据本公开的一实施例的发光封装件制造工艺的剖面图。根据本公开的一实施例的发光元件100可以通过本领域中公知的多样的方法来进行转印以及封装。以下,将示例性地说明通过利用载体基板11c在基板11上附着第二粘合层13而转印发光元件100的情形,但是本公开并不受限于特定的转印方法。
参照图14,根据本公开的一实施例,所述单一化的发光元件100可以布置为将第二粘合层13置于中间而转印到载体基板11c上。此时,当发光元件包括从发光堆叠结构体向外突出的连接电极时,如上所述地会因不均匀的结构而在后续工艺(尤其是转印工艺)中发生多样的问题。此外,当发光元件根据其应用领域而包括具有约小于10000μm2或者约小于4000μm2或者约小于2500μm2的表面积的微型led时,发光元件的处理会因较小的形状因子而更加困难。但是,提供在连接电极20ce、30ce、40ce、50ce之间布置有保护层90的根据示例性的实施例的发光元件100不仅可以使在诸如转印以及封装之类的后续工艺期间使发光元件100的处理更加容易,而且还可以保护发光结构体免受外部冲击的影响并可以防止相邻的发光元件100之间的光的干扰。
只要载体基板11c能够将发光元件100稳定地安装到第二粘合层13,则载体基板11c不会被特别地限定。第二粘合层13可以是胶带,但是只要第二粘合层13能够将发光元件100稳定地附着到载体基板11c,并在后续工艺期间能够分离发光元件100,则本公开并不局限于此。在若干实施例中,图13的发光元件100可以直接被转印到电路基板11p而不是被转印到单独的载体基板11c。
发光元件100可以贴装到电路基板11p上。根据一实施例,电路基板11p可以包括相互电连接的上部电路电极11pa、下部电路电极11pc以及中间电路电极11pb。上部电路电极11pa可以与第一连接电极20ce、第二连接电极30ce、第三连接电极40ce以及第四连接电极50ce分别对应。在示例性的实施例中,上部电路电极11pa通过enig而被表面处理,并且在高温中被局部地熔融,从而可以使对发光元件100的连接电极的电连接更加容易。
根据示例性的实施例,可以优选考虑要安装到最终目标装置(如,显示装置)的电路基板11p的上部电路电极的间距p(参照图16b),发光元件100以期望的间距在载体基板上相互隔开。
根据本公开的一实施例,各个发光元件100的第一连接电极20ce、第二连接电极30ce、第三连接电极40ce以及第四连接电极50ce可以通过例如各向异性导电胶膜(acf)贴合而被接合在电路基板11p的上部电路电极11pa。当通过在能够在相比于其他接合方法较低的温度下执行的acf接合来将发光元件100接合到电路基板时,可以防止发光元件100在接合期间暴露在高温。然而,本公开并不受限于特定接合方法。例如,在部分示例性的实施例中,发光元件100可以使用各向异性导电膏(acp)、焊料、球栅阵列(bga)或者包括cu以及sn中的至少一个的微型凸起来接合到电路基板11p。此时,连接电极20ce、30ce、40ce、50ce的上部表面和保护层90通过抛光工艺等而实质上相互平行,因此增加了发光元件100对于各向异性导电胶膜的粘附性,从而在接合到电路基板11p时可以形成更加稳定的结构。
参照图15,注塑层91形成在发光元件100之间。根据一实施例,注塑层91可以反射或吸收从发光元件100发出的光而阻挡光。注塑层91尤其在发光元件100的上表面(即,发光面)平行,据此,可以缩小从第一发光堆叠件20、第二发光堆叠件30、第三发光堆叠件40发出的光的指向角。例如,注塑层91可以覆盖基板11的侧表面,并且可以平行于基板11的上表面。因此,注塑层91可以防止光从基板11的侧表面发出,从而缩小指向角。尤其,由于发光面限制为基板11的上表面,因此第一发光堆叠件20、第二发光堆叠件30、第三发光堆叠件40的光的指向角大致相同。并且,注塑层91与形成于发光元件100上的保护层90一起强化其结构,从而对发光封装件提供附加的保护。由于注塑层91布置在相邻的发光元件100之间,因此,在相邻的连接电极之间布置有注塑层91和保护层90,并且保护层90将注塑层91置于其之间而布置于两侧。
在示例性的实施例中,注塑层91可以包括有机或者无机聚合物。在若干实施例中,注塑层91可以额外地包括诸如二氧化硅或者氧化铝的填充剂。在示例性的实施例中,注塑层91可以包括与保护层90相同的物质。注塑层91可以通过诸如层压、金属镀覆和/或印刷方法之类的在本领域中公知的多样的方法来形成。例如,注塑层91通过有机高分子片布置在发光元件100上并在真空中施加高温以及高压的真空层压工艺来形成,提供发光封装件的实质上平坦的上表面来提高光均匀性。注塑层91可以通过研磨工序或者全面蚀刻工序被局部地去除,以暴露发光元件100的上表面。
在若干实施例中,可以在注塑层91形成之前从发光元件100去除基板11。此时,注塑层91可以覆盖第一导电型半导体层41的侧表面并且暴露第一导电型半导体层41的上表面。
参照图16a以及图16b,布置在电路基板11p上的发光元件100可以被切割为期望的构成并形成为发光封装件110。图16b包括布置在电路基板11p上的4个发光元件100(2×2)。然而,本公开并不受限于形成在发光封装件110的特定数量的发光元件。例如,在若干实施例中,发光封装件110可以包括形成在电路基板11p上的一个以上的发光元件100。此外,本公开并不受限于发光封装件110内的一个以上的发光元件100的特定排列,例如,发光封装件110内的一个以上的发光元件100可以排成n×m排列。这里,n和m为正整数。根据一实施例,电路基板11p可以包括用于独立驱动包含在发光封装件110的各个发光元件100的扫描线以及数据线。
图17是用于说明根据本公开的一实施例的显示装置的示意性的剖面图。
参照图17,显示装置可以包括显示基板11b及发光封装件110。发光封装件110可以贴装到最终装置(如,显示装置)的显示基板11b上。显示基板11b可以包括与发光封装件110的下部电路电极11pc分别对应的目标电极11s。根据本公开的显示装置可以包括多个像素,各个发光元件100可以布置为对应于各个像素。更具体地,根据本公开的发光元件100的各个发光堆叠件可以对应于一个像素的各个子像素。发光元件100包括垂直叠层的发光堆叠件20、30以及40,因此将要针对各个子像素转印的元件的数量与现有的发光元件的数量相比可以实质上减少。此外,由于连接电极的对向面的长度彼此不同,因此可以在发光堆叠结构体稳定地形成连接电极而强化内部结构。此外,由于根据若干实施例的发光元件100在连接电极之间包括保护层90,因此可以保护发光元件100免受外部冲击的影响。
在本实施例中,虽然以发光封装件110贴装于显示基板11b的情形进行了说明,但可以省略制造发光封装件110的工序,并且可以通过将发光元件100直接贴装到显示基板11b上而形成注塑层91。
图18是用于说明根据本公开的又一实施例的发光封装件的示意性的剖面图。
参照图18,根据本实施例的发光封装件大致类似于先前参照图15、图16a及图16b说明的发光封装件,不同之处在于发光元件200不包括基板11。从发光元件100去除基板11,从而暴露第一导电型半导体层41。发光元件200通过第一导电型半导体层41的上表面发出光,因此,第一导电型半导体层41的上表面成为发光面。注塑层91覆盖第一导电型半导体层41的侧表面并暴露其上表面。
图19a是表示根据现有技术而不使用注塑层的情况下的发光元件的指向角的曲线图,图19b是表示根据本公开的一实施例而使用透明注塑层的情况下的发光元件的指向角的曲线图,图19c是表示在使用根据本公开的一实施例的黑色注塑层的情况下的发光元件的指向角的曲线图。
参照图19a,当不使用注塑层91时,从发光元件100发出的红色光r、绿色光g及蓝色光b的指向角彼此具有较大的差异。尤其,可以看出,从靠近发光面的第三发光堆叠件40发出的绿色光g的指向角最大。更具体地,红色光的指向角为约125.7°,蓝色光b的指向角为约128.8°,绿色光g的指向角为约155.6°。绿色光g的指向角相比于红色光r或者蓝色光b的指向角大大约30°。
参照图19b,即使是采用透明注塑层91的情况,与图19a的指向角相比,可以确认红色光r、绿色光g和蓝色光r的所有光的指向角减小。此外,可以看出,由于绿色光g的指向角进一步减小,因此红色光r、绿色光g和蓝色光b的指向角之间的差异减小。具体地,红色光的光束角为约128.3,蓝色光b的指向角为约126.4,并且绿色光g的指向角为约135.2。与红色光r或蓝色光b的指向角相比,绿色光g的指向角不超过10°。
参照图19c,当采用黑色注塑层91时,可以看出,与图19b相比,红色光r、绿色光g和蓝色光r的所有光的指向角进一步减小。此外,可以看出,红色光r、绿色光g和蓝色光r之间的指向角的差异也进一步减小。具体地,红色光的指向角为约124.2°,蓝色光b的指向角为约119.0°,绿色光g的指向角为约126.5°。与红色光r或蓝色光b的指向角相比,绿色光g的指向角不超过约10度。
虽然在本说明书中对示例性的实施例以及实现进行了说明,但是通过本说明将明确其它实施例以及修改。因此,本公开并不局限于这些实施例,并且包括更宽范围以及对于本领域技术人员明确的多样的修改和等同的构成。