1.本发明涉及一种光电探测器,尤其涉及一种从远红外到太赫兹波段连续可调的双层石墨烯光电探测器。
背景技术:2.光电探测器把光信号转换为电信号,其工作原理基于光电效应。传统半导体领域习惯把光电探测器分为两大类:一类是光子探测器;另一类是热探测器。光电探测器已经被广泛应用于诸多领域。
3.2004年,石墨烯由曼彻斯特大学andre geim教授领导的课题组最先发现和制备。它是目前已知真正的二维材料(只有单个原子层厚),根据机械剥离法或者气相沉积法制备,具备极高的载流子迁移率(本征迁移率~15000cm2v
‑
1s
‑
1)、非常好的稳定性、以及电子载流子浓度可根据电场可调、机械强度高,被认为是极具潜力的材料,因而在多个领域都有极其广泛的应用。石墨烯的光学性能也非常好,单层石墨烯仅吸收2.3%的可见光,因此可以用来作为透明电极,且吸收电磁波的波长范围很广,吸收波段从可见光到远红外。
4.通过实验和理论研究发现,双层石墨烯光电探测器有内部建立的电场,可以有效抑制暗电流;载流子在电压调节下,形成定向输运,而且在输运中几乎没有散射,使得噪声被很大程度上抑制了,使得石墨烯探测器质量与传统探测器相比有很大提升。
5.石墨烯中的电子和空穴可以在外部电场的影响下快速迁移。然而,基于单层石墨烯的晶体管具有明显的缺点,即单层石墨烯没有带隙,因此其不能被有效地关闭。而良好的半导体器件具有良好的打开和关闭的特性。因此单层石墨烯光电探测器的响应率和増益受到了自身能带无带隙结构的极大制约。
6.然而,石墨烯超薄的厚度会对其吸收光的能力产生极大的限制,尤其是单层石墨烯,厚度只有一个单原子层,阻碍了外部量子效率和探测器的质量,而如果选用双层石墨烯来制作光电探测器的话,那么量子效率和响应度会大大提高;
7.双层石墨烯具有与单层石墨烯相当的光透射率,响应速度也很快,但具有较低的薄层电阻,其导电性对转移和制造过程中产生的结构缺陷、晶界和裂纹等不太敏感。因此,它在导电性和光传输之间具有良好的平衡。
8.此外目前有人提出双层石墨烯波导型探测器的设计并测试出结果,工作波段仅为0.3
‑
1.2thz,制作工艺复杂,难于大规模推广及应用,且工作波段范围不够大。
技术实现要素:9.发明目的:本发明的目的在于提供一种能极大地提高石墨烯器件的光电响应,通过电场调控使双层石墨烯打开带隙,并且能够续调控带隙0
‑
250mev的从远红外到太赫兹波段连续可调的双层石墨烯光电探测器。
10.技术方案:本发明的从远红外到太赫兹波段连续可调的双层石墨烯光电探测器,双层石墨烯电子传输层封装在上下两层六角氮化硼之间,构成范德瓦尔斯异质结;所述异
质结下方放置了石墨作为背栅,异质结上方放置石墨烯作为顶栅,异质结两侧搭载有源极和漏极。
11.进一步地,所述源极和漏极采用由70nm厚的铬/金层。
12.进一步地,所述源极和漏极通过一维电接触技术搭载在异质结两侧。
13.进一步地,所述一维电接触技术包括刻蚀和热蒸镀。
14.进一步地,所述双层石墨烯光电探测器放置在绝缘衬底上。
15.进一步地,所述绝缘衬底的材质为sio2。
16.进一步地,所述绝缘衬底的厚度为几十到几百nm。
17.进一步地,所述双层石墨烯光电探测器放在光学低温恒容器的真空环境中,测量温度为4k~77k,源极和漏极之间的偏置电压为1~10mv。
18.有益效果:与现有技术相比,本发明具有如下显著优点:本发明的双层石墨烯光电探测器,利用bn封装并且石墨烯透明顶栅和石墨背栅构成双栅调控,有效地提高石墨烯的载流子浓度和迁移率,极大地提高了石墨烯器件的光电响应。通过电场调控使双层石墨烯打开带隙,并且能够续调控带隙0
‑
250mev,从而使单个双层石墨烯光电探测器工作波段从远红外到太赫兹,并且连续可调,且品质因数高,极优异的光灵敏度,响应时间快,此外,器件制备简单,具有大规模推广应用的前景。
附图说明
19.图1为本发明的双层石墨烯光电探测器结构示意图;
20.图2为本发明的双层石墨烯光电探测器外部电路图;
21.图3为本发明的双层石墨烯光电探测器原理图;
22.图4为本发明图3的补充原理示意图。
具体实施方式
23.下面结合附图对本发明的技术方案作进一步说明。
24.双层石墨烯的主要优点是通过电场诱导带隙并通过改变电场大小来调节其带隙的量值,可以连续调控带隙至0
‑
250mev,其光电效应的响应度相比于单层石墨烯提高了很多,因此对基于双层石墨烯研究有重大意义.拥有可随外场调节的带隙,这意味着它可以被用来设计下一代晶体管,也意味着基于双层石墨烯的单个光电探测器工作波段从远红外到太赫兹并且连续可调。
25.激子是依靠库仑相互作用束缚的电子
‑
空穴对。当半导体材料吸收一个光子之后,电子吸收足够的能量,由价带跃迁至导带,由于库仑作用,导带中的电子仍然和价带中的空穴关联在一起。激子可以在半导体材料内运动,对电导率没有贡献,因而一般不引起光电导效应。但可以通过热激发、激子―激子非弹性碰撞、电场电离等方法离解激子,以形成自由电子和空穴,为激子激发光电导提供了必要的条件。因此,激子对于刻画半导体的光学特性有重要意义,是一种非常清晰明了的物理图像。
26.当材料受到外界光的照射,吸收光子而引起材料内部载流子浓度发生变化,导致材料的电导率随之改变,这种现象称为光电导效应。当光子所携带的能量大于材料的能带带隙宽度时,价带顶部的电子吸收能量被激发到导带之中形成自由电子,同时,在价带中原
来的位置上会留下相同数量的空穴,材料的电导率随之发生变化,这就是本征光电导效应。光敏电阻就是一种基于光电导效应的光电器件。
27.如图1所示,本发明的双层石墨烯光电探测器包括1
‑
源极,2
‑
漏极,3
‑
双层石墨烯,4
‑
bn(六角氮化硼),5
‑
单层石墨烯(mlg)作为透明顶栅,6
‑
石墨作为背栅,7
‑
sio2绝缘衬底。图2中,1
‑
双层石墨烯光电探测器放置在光学低温恒容器中,2
‑
光源,3
‑
抛物面镜,4
‑
锁相信号放大器。
28.图1中源极1和漏极2于施加偏置电压探测器件中的光电流,双层石墨烯电子传输层3封装在两层bn(六角氮化硼)4之间;器件核心区域通过单层石墨烯透明顶栅5和石墨背栅6构成双栅调控。整个器件放在几十到几百纳米厚的sio2绝缘衬底7上。
29.其工作机制是通过双栅施加的电场调控,双层石墨烯可以打开带隙并且连续可调,范围在0
‑
250mev。光照射到双层石墨烯光电探测器上,价带上的电子接受能量,使电子脱离晶格势能束缚。当光提供的能量达到能带带隙的能量值时,价带的电子吸收能量,跃迁到导带,在价带原来的位置上会产生相同数量的空穴,这两种载流子都参与导电。这时在源极和漏极之间加上小偏压,可以使跃迁到导带的电子形成光电流。
30.通过双栅调节以及提高器件质量,再加上双层石墨烯带隙可随电场连续可调的特性,使单个双层石墨烯光电探测器响应波段从远红外到太赫兹连续可调,突破了单个传统探测器工作波段不能连续可调的瓶颈,且响应度提升,品质因数增加。并且器件制备工艺简单,易于推广,具有广泛的应用价值。
31.作为电子传输层的双层石墨烯,通过机械剥离或者化学气相沉积法获得。
32.源极和漏极则通过刻蚀和热蒸镀的方法(一维电接触)搭在整个器件两侧。
33.图2中器件放在光学低温恒容器1的真空环境中,测量温度为4k
‑
77k,源漏之间的偏置电压为1
‑
10mv。红外光源2,通过抛物面镜3聚焦到光学低温恒容器1。再通过锁相放大器4分析双层石墨烯光电探测器的激发谱。
34.图3中光线照射到双层石墨烯光电探测器上,价带上的电子接受能量,使电子脱离晶格束缚。当光提供的能量达到能带带隙的能量值时,价带的电子吸收能量,跃迁到导带,在晶体中就会产生电子和相同数量的空穴,这两种载流子都参与导电。这时在源极和漏极之间加上偏压,可以使跃迁到导带的电子形成光电流。电子空穴由于库伦相互作用还可能形成激子。
35.图4中电场施加在双层石墨烯上打开带隙,费米能级e
f
被调控在导带和价带之间。根据普朗克公式,光子以e=hv形式照射进来。当光子能量大于跃迁能量时,电子吸收能量,从价带跃迁至导带上。价带原本电子的位置上,形成空穴。