脉冲阵列时域滤波方法、装置、设备及存储介质与流程

文档序号:22477213发布日期:2020-10-09 22:19阅读:177来源:国知局
脉冲阵列时域滤波方法、装置、设备及存储介质与流程

本发明涉及信号处理技术领域,特别涉及一种脉冲阵列时域滤波方法、装置、设备及存储介质。



背景技术:

脉冲是一种类似生物神经元之间信息传递的时空信号,脉冲的获取方法包括:采集监测区域中各局部空间位置的时空信号,并对时空信号按照时间进行累积,得到信号强度值;通过将信号累积强度变换到另一个频域,在变换结果超过特定阈值时输出脉冲信号;将局部空间位置对应的脉冲信号按照时间先后顺序排列成二值序列,得到表达局部空间位置信号及其变化过程的脉冲序列;将所有局部空间位置的脉冲序列按照空间位置相互关系排列成脉冲阵列,作为对监测区域的动态时空信号的表达。在上述过程中,由于脉冲阵列是通过光信号累计超过阈值产生的,除运动物体外,监测区域中的背景和静止部分也会按照一定频率产生脉冲序列。因此,此过程中产生的大量冗余脉冲信号将不利于后续的运动物体检测、识别及跟踪等高级视觉任务。



技术实现要素:

本公开实施例提供了一种脉冲阵列时域滤波方法、装置、设备及存储介质。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。

在一些可选地实施例中,一种脉冲阵列时域滤波方法,包括:

在监测区域内的各个空间位置建立短时程可塑性模型;

将脉冲阵列输入短时程可塑性模型,获得各个空间位置的后突触电位值、神经递质剩余量和/或神经递质释放概率;

根据同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值、神经递质剩余量的差值和/或神经递质释放概率的差值,去除该空间位置当前时刻产生的脉冲信号。

进一步地,根据同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值、神经递质剩余量的差值和/或神经递质释放概率的差值,去除该空间位置当前时刻产生的脉冲信号,包括:

当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值小于预设电位变化阈值时,或,

当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质剩余量的差值小于预设神经递质剩余量变化阈值时,或,

当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质释放概率的差值小于预设神经递质概率变化阈值时,去除该空间位置当前时刻产生的脉冲信号。

进一步地,还包括:

当后突触电位值的差值大于或等于预设电位变化阈值时,或,

当神经递质剩余量的差值大于或等于预设神经递质剩余量变化阈值时,或,

当神经递质释放概率的差值大于或等于预设神经递质概率变化阈值时,保留该空间位置当前时刻产生的脉冲信号。

进一步地,在监测区域内的各个空间位置建立短时程可塑性模型,包括:

在监测区域内的各个空间位置建立短时程可塑性增强模型,和/或短时程可塑性抑制模型。

进一步地,还包括:

短时程可塑性模型在每个空间位置的参数相同或不同。

进一步地,将脉冲阵列输入短时程可塑性模型之前,还包括:

获取脉冲阵列。

进一步地,获取脉冲阵列,包括:

使用多个传感器采集监测区域中各局部空间的光信号,得到各个空间位置的信号;

在各个空间位置,对所得到的信号按时间进行累积,得到信号累积强度值;

当信号累积强度值超过设定条件时,输出脉冲信号;

将各个局部空间位置输出的脉冲信号按照时间先后顺序排列成二值序列;

将所有二值序列按照空间位置相互关系排列构成脉冲阵列。

在一些可选地实施例中,一种脉冲阵列时域滤波装置,包括:

模型建立模块,用于在监测区域内的各个空间位置建立短时程可塑性模型;

脉冲输入模块,用于将脉冲阵列输入短时程可塑性模型,获得各个空间位置的后突触电位值、神经递质剩余量和/或神经递质释放概率;

滤波模块,用于根据同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值、神经递质剩余量的差值和/或神经递质释放概率的差值,去除该空间位置当前时刻产生的脉冲信号。

在一些可选地实施例中,一种脉冲阵列时域滤波设备,包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行上述实施例提供的脉冲阵列时域滤波方法。

在一些可选地实施例中,一种计算机可读介质,其上存储有计算机可读指令,计算机可读指令可被处理器执行以实现上述实施例提供的一种脉冲阵列时域滤波方法。

本公开实施例提供的技术方案可以包括以下有益效果:

本公开实施例提供了一种脉冲阵列时域滤波方法,针对脉冲阵列的时空发放特性,结合神经生物学中突触间的短时程可塑性,设计了一种基于脉冲阵列短时程动态变化特性的时域滤波方法,对监测区域的各局部空间位置进行时空信号采集并以脉冲阵列的形式进行编码,将脉冲阵列输入短时程可塑性模型,获得各个空间位置的后突触电位值,计算脉冲阵列中,各个空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值,当所述差值小于预设电位变化阈值时,去除该空间位置当前时刻产生的脉冲信号。通过上述方法,可以将阵列中跟检测物体无关的背景脉冲信息去除,处理后的脉冲阵列信号可用于运动物体的检测、跟踪、识别。

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。

附图说明

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。

图1是根据一示例性实施例示出的一种脉冲阵列时域滤波方法的流程示意图;

图2是根据一示例性实施例示出的一种短时程可塑性模型的示意图;

图3是根据一示例性实施例示出的一种固定发放频率脉冲阵列短时程突触增强输出的示意图;

图4是根据一示例性实施例示出的一种非固定发放频率脉冲阵列短时程突触增强输出的示意图;

图5是根据一示例性实施例示出的一种脉冲阵列时域滤波装置的结构示意图;

图6是根据一示例性实施例示出的一种脉冲阵列时域滤波设备的结构示意图。

具体实施方式

为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或一个以上实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。

本公开实施例中的脉冲阵列时域滤波方法,可应用于仿视网膜芯片产生的脉冲阵列,目的是利用高频率视网膜相机获得的脉冲阵列本身具有的时空特性,仿照生物视觉特性,直接以脉冲阵列为输入,尽可能地去除监测区域中背景或静止的冗余脉冲信号,从而更有利于后续基于脉冲信号的高速视觉对象的检测、识别及跟踪等高级视觉任务。

实施例一:

本公开实施例提供了一种脉冲阵列时域滤波方法,图1是根据一示例性实施例示出的一种脉冲阵列时域滤波方法的流程示意图。如图1所示,一种脉冲阵列时域滤波方法,包括:

s101在监测区域内的各个空间位置建立短时程可塑性模型;

具体地,本公开实施例中的脉冲阵列时域滤波方法,是基于神经计算中的突触短时程可塑性模型。神经元之间的连接称为突触,突触可塑性指的是突触强度的变化,传统的人工神经网络将神经元之间传递信息的过程简化为一个点过程,以连接权重值表示神经元之间的连接关系,这与真实神经系统中信息传递的过程不同,神经元间的连接会受输入信号强度、时间、过程等因素的影响。突触可塑性指突触强度的变化,根据带来变化时间尺度的不同,其可分为两类:长时程可塑性和短时程可塑性。

长时程可塑性通常被认为是学习及记忆的基础,其带来的突触强度变化会持续较长时间,而短时程可塑性指的是突触强度发生的短时间变化,通常发生几十到几千毫秒之间,也称为神经元间的动态连接,当脉冲阵列输入到网络中时,根据其脉冲发放特性突触连接强度在短时间内增强称为短时程增强模型,连接强度短时间内减弱的称为短时程抑制模型。

具体地,在监测区域内的各个空间位置,建立短时程可塑性模型,图2是根据一示例性实施例示出的一种短时程可塑性模型的示意图,如图2所示,短时程可塑性模型的变量x,表示突触中轴突上可用的神经递质剩余量,其中,0<x<1,变量u表示轴突上神经递质的释放概率。其对应的微分方程式如下:

其中,tsp表示动作电位发生的时刻;δ(t-tsp)为狄拉克函数,在神经计算中通常用这种形式表示输入网络的脉冲序列,u+,u-表示在tsp时刻前后神经递质释放概率,u是单个动作电位引起的神经递质释放概率的增加,τf表示单个动作电位后神经递质释放量衰减至0的时间常数,τd表示单个动作电位后神经递质剩余量恢复至1的时间常数,为便于实现该模型,通常可将其转化为两个动作电位之间的差分方程实现,其形式如下:

其中,δt表示当前脉冲与脉冲序列中上一个不为零的脉冲之间的时间间隔。在各个空间位置建立的短时程可塑性模型的参数,包括τd、τf、u、x0、0,在参数初始化时可以相同或不同。

在一些可选地实施例中,在各个空间位置建立短时程可塑性模型,包括:

在各个空间位置建立短时程可塑性抑制模型,或在各个空间位置建立短时程可塑性增强模型,或在各个空间位置建立短时程可塑性增强模型和短时程可塑性抑制模型。通过调节方程中时间常数τd与τf之间的关系,使得短时程可塑性模型表现为抑制型(τd>>f)或增强型(τd<<f)。

通过该步骤,实现了在监测区域内的各个空间位置建立短时程可塑性模型。

s102将脉冲阵列输入短时程可塑性模型,获得各个空间位置的后突触电位值、神经递质剩余量和/或神经递质释放概率;

具体地,在将脉冲阵列输入短时程可塑性模型之前,还包括,获取监测区域的脉冲阵列,首先,采集各个局部空间位置的信号,对各个空间位置的信号进行累积,得到信号累积强度值,当信号累积强度值超过预设累积强度阈值时,输出脉冲信号,将各个空间位置输出的脉冲信号按照时间顺序排列成二值序列,将所有空间位置对应的二值序列构成脉冲阵列。

可选地,可以利用高频率视网膜相机获得的脉冲阵列本身具有的时空特性,仿照生物视觉特性,直接将视觉脉冲阵列输入短时程可塑性模型。

将脉冲阵列输入短时程可塑性模型后,利用短时程可塑性模型的差分方程以及后突触电位产生公式,计算得到不同空间位置的后突触电位值。当后突触神经元接收到前突触传来的脉冲阵列时,产生的psp(postsynapticpotential,后突触电位)为:

pspn=a·xn·un

其中,a是单个动作电位在突触后神经元上可能激发的最大电流值。

由图2可知,短时程可塑性模型的变量x,表示突触中轴突上可用的神经递质剩余量,其中,0<x<1,变量u表示轴突上神经递质的释放概率,将脉冲阵列输入短时程可塑性模型,也可以获得各个空间位置的神经递质剩余量和神经递质释放概率。

s103根据同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值、神经递质剩余量的差值和/或神经递质释放概率的差值,去除该空间位置当前时刻产生的脉冲信号。

在一种可能的实现方式中,当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值小于预设电位变化阈值时,或,当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质剩余量的差值小于预设神经递质剩余量变化阈值时,或,当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质释放概率的差值小于预设神经递质概率变化阈值时,去除该空间位置当前时刻产生的脉冲信号。

可选地,可以根据同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值,去除背景、静止部分发放的脉冲信号。

图3是根据一示例性实施例示出的一种固定发放频率脉冲阵列短时程突触增强输出的示意图;如图3所示,在固定频率30hz的脉冲模式下,在若干个脉冲到达后,后突触电位值的振幅会收敛于一个稳定值。

图4是根据一示例性实施例示出的一种非固定发放频率脉冲阵列短时程突触增强输出的示意图;如图4所示,虚线表示脉冲频率,可见脉冲频率在发生变化,产生的后突触电位振幅值会在稳定值周围波动。

因此利用短时程可塑性模型对于脉冲序列的发放时间模式的敏感性,可将脉冲阵列中的背景或静止对象的脉冲信号进行过滤,尽可能地只保留脉冲阵列中运动对象的脉冲信号。

具体地,获取脉冲阵列中,其中一个空间位置在当前时刻产生的脉冲信号对应的后突触电位值,获取该空间位置产生的上一个不为零的脉冲信号对应的后突触电位值,计算脉冲阵列中,对应同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值,当所述差值小于预设电位变化阈值时,去除该空间位置当前时刻产生的脉冲信号。其中,预设电位变化阈值用户可自行设定。

进一步地,当差值大于或等于预设电位变化阈值时,还包括:保留该位置产生的脉冲信号。

可选地,可以根据同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质剩余量的差值,去除背景、静止部分发放的脉冲信号。

在建立的短时程可塑性基础上,可直接根据突触中轴突上可用的神经递质剩余量,即变量x(0<x<1)的变化来对脉冲序列进行一个滤波处理。具体地,获取脉冲阵列中,其中一个空间位置在当前时刻产生的脉冲信号对应的神经递质剩余量xn,获取该空间位置产生的上一个不为零的脉冲信号对应的神经递质剩余量xn-1,计算脉冲阵列中,对应同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质剩余量的差值,当所述差值小于预设神经递质剩余量变化阈值时,去除该空间位置当前时刻产生的脉冲信号。其中,预设变化阈值用户可自行设定。

进一步地,当差值大于或等于预设神经递质剩余量变化阈值时,还包括:保留该位置产生的脉冲信号。

可选地,可以根据同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质释放概率的差值,去除背景、静止部分发放的脉冲信号。

在建立的短时程可塑性基础上,可直接根据轴突上神经递质的释放概率,即变量u的变化来对脉冲序列进行一个滤波处理。具体地,获取脉冲阵列中,其中一个空间位置在当前时刻产生的脉冲信号对应的神经递质释放概率un,获取该空间位置产生的上一个不为零的脉冲信号对应的神经递质概率un-1,计算脉冲阵列中,对应同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质释放概率的差值,当所述差值小于预设神经递质概率变化阈值时,去除该空间位置当前时刻产生的脉冲信号。其中,预设变化阈值用户可自行设定。

进一步地,当差值大于或等于预设神经递质释放概率变化阈值时,还包括:保留该位置产生的脉冲信号。

可选地,可以根据同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值、神经递质剩余量的差值和神经递质释放概率的差值中的一种或多种,去除该空间位置当前时刻产生的脉冲信号。在一种可能的实现方式中,当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值小于预设电位变化阈值,和当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质剩余量的差值小于预设神经递质剩余量变化阈值,和当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质释放概率的差值小于预设神经递质概率变化阈值时,去除该空间位置当前时刻产生的脉冲信号。

在一种可能的实现方式中,当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值小于预设电位变化阈值,和当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质剩余量的差值小于预设神经递质剩余量变化阈值,去除该空间位置当前时刻产生的脉冲信号。

在一种可能的实现方式中,当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质剩余量的差值小于预设神经递质剩余量变化阈值,和当同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的神经递质释放概率的差值小于预设神经递质概率变化阈值时,去除该空间位置当前时刻产生的脉冲信号。

进一步地,在监测区域内的各个空间位置建立短时程可塑性模型,包括:

在监测区域内的各个空间位置建立短时程可塑性增强模型,和/或短时程可塑性抑制模型。

具体地,通过调节方程中时间常数τd与τf之间的关系,可以建立短时程可塑性增强模型和短时程可塑性抑制模型,当τd>>f时,使得短时程可塑性模型表现为抑制型,当τd<<f,使得短时程可塑性模型表现为增强型。根据时间常数τd与τf之间的关系不同,可以在各个空间位置建立短时程可塑性抑制模型,或在各个空间位置建立短时程可塑性增强模型,或在各个空间位置建立短时程可塑性增强模型和短时程可塑性抑制模型。

进一步地,还包括:

短时程可塑性模型的参数相同或不同。

具体地,在建立完短时程可塑性模型后,对模型的参数进行初始化,包括对τd、τf、u、x0、u0等参数进行初始化,其中,各个空间位置的模型的参数初始化可以相同或不同。

进一步地,将脉冲阵列输入短时程可塑性模型之前,还包括:

获取脉冲阵列。首先,采集各个空间位置的信号,对各个空间位置的信号进行累积,得到信号累积强度值,当信号累积强度值超过预设累积强度阈值时,输出脉冲信号,将各个空间位置输出的脉冲信号按照时间顺序排列成二值序列,将所有空间位置对应的二值序列构成脉冲阵列。

进一步地,短时程可塑性模型包括基于动作电位的微分参数方程和差分参数方程。

实施例二:

本公开实施例提供了一种脉冲阵列时域滤波装置,图5是根据一示例性实施例示出的一种脉冲阵列时域滤波装置的结构示意图;如图5所示,一种脉冲阵列时域滤波装置,包括:

s501模型建立模块,用于在监测区域内的各个空间位置建立短时程可塑性模型;

s502脉冲输入模块,用于将脉冲阵列输入短时程可塑性模型,获得各个空间位置的后突触电位值、神经递质剩余量和/或神经递质释放概率;

s503滤波模块,用于根据同一空间位置的当前时刻产生的脉冲信号与上一个脉冲信号对应的后突触电位值的差值、神经递质剩余量的差值和/或神经递质释放概率的差值,去除该空间位置当前时刻产生的脉冲信号。

基于本公开实施例提供的脉冲阵列时域滤波装置,针对脉冲阵列的时空发放特性,结合神经生物学中突触间的短时程可塑性,设计了一种基于脉冲阵列短时程动态变化特性的时域滤波装置,通过上述装置,可以将阵列中跟检测物体无关的背景脉冲信号去除,处理后的脉冲阵列信号可用于运动物体的检测、跟踪、识别。

实施例三:

本公开实施例提供了一种脉冲阵列时域滤波设备,图6是根据一示例性实施例示出的一种脉冲阵列时域滤波设备的结构示意图。

如图6所示,一种脉冲阵列时域滤波设备,包括处理器61和存储有程序指令的存储器62,还可以包括通信接口63和总线64。其中,处理器61、通信接口63、存储器62可以通过总线64完成相互间的通信。通信接口63可以用于信息传输。处理器61可以调用存储器62中的逻辑指令,以执行上述实施例提供的脉冲阵列滤波方法。

实施例四:

本公开实施例提供了一种计算机可读介质,其上存储有计算机可读指令,计算机可读指令可被处理器执行以实现上述实施例提供的一种脉冲阵列时域滤波方法。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1